Improving the Traditional RCA Methodology to Design a Most Efficient and Reliable Valve for LDPE Hypercompressors Leveraging Experimental Data From Test Bench Simulation: A Real Case Study

Author(s):  
Carmelo Maggi ◽  
Leonardo Tognarelli ◽  
Riccardo Bagagli ◽  
Jan Wojnar

The behavior of the valves of Hypercompressors on LDPE plants is challenging to predict because it depends on many factors and often the expected and macroscopic gas parameters, such as pressure, temperature and gas composition are not sufficient to properly evaluate the valve behavior in the field. In fact valve operation is highly dependent on local phenomena such as localized pressure losses and presence of vortexes which are in turn influenced by the geometry of the valve and by its behavior. To better understand all these phenomena it is needed to characterize these valves through experimental tests aimed at defining, with a good accuracy, the valve dimensionless parameters Cd (drag coefficient) and Ks (flow coefficient) as a function of the geometry of the valve itself. If the coefficients Cd and Ks are not accurate, the expected behavior of the valve may be completely different from the evidence of the field and could not properly explain certain types of failure modes. With a more accurate evaluation of Cd and Ks, some types of damage which in first hypothesis would seem caused by factors external to the valve, in reality are proven to be intrinsically related to valve design and often dependent on valve malfunctioning. As a final step, through to a deep understanding of the valve behavior in the field an improvement of valve reliability and efficiency can be achieved through optimization of the design for various operating conditions.

Author(s):  
Carmelo Maggi ◽  
Jan Wojnar ◽  
Riccardo Bagagli ◽  
Leonardo Tognarelli

In recent years, also because of the overall contraction of the market, all compressor manufacturers are differentiating their products by offering solutions that optimize/minimize costs while maintaining the same robustness and reliability. To achieve this goal, the main guidelines are “Power Density” and “Efficiency”. On hyper compressors for LDPE plants, the absorbed power of the valves has a key role in overall efficiency and, thanks to dedicated development programs aimed to design more and more efficient valves, represents one of the disciplines where it is still possible to improve the performance. The absorbed power of this type of valves is strictly correlated to their behavior which is challenging to predict because it depends on many factors. The expected macroscopic gas parameters, such as pressure, temperature and gas composition often are not sufficient to properly evaluate valve behavior in the field. In fact valve operation is highly dependent on local phenomena such as localized pressure losses and presence of vortexes which are in turn influenced by the geometry of the valve and by its behavior. To better understand all these phenomena it is needed to characterize these valves through experimental tests aimed at defining, with a good precision and accuracy, the valve dimensionless parameters Cd (drag coefficient) and Ks (flow coefficient) as a function of the geometry of the valve itself. If the coefficients Cd and Ks are not accurate, the expected behavior of the valve and, as a consequence the valve losses, may be completely different from the evidence of the field and could not properly explain some unexpected power consumption. Therefore, through a dedicated characterization of the valves design, it is possible to improve the predictability of the valve, also in terms of power consumption, that contributes to a better evaluation of the total absorbed power by the compressor, which allows designers to reduce their margins of uncertainty.


Author(s):  
Enzo Giacomelli ◽  
Massimo Schiavone ◽  
Fabio Manfrone ◽  
Andrea Raggi

Poppet valves have been used for a long time for very high pressure reciprocating compressors, as for example in the case of Low Density Polyethylene. These applications are very critical because the final pressure can reach 350 MPa and the evaluation of the performance of the machines is strongly connected to the proper operation and performance of the valve itself. The arrangement of cylinders requires generally a certain compactness of valve to withstand high fatigue stresses, but at the same time pressure drop and operating life are very important. In recent years the reliability of the machines has been improving over and over and the customers’ needs are very stringent. Therefore the use of poppet valves has been extended to other cases. In general the mentioned applications are heavy duty services and the simulation of the valves require some coefficients to be used in the differential equations, able to describe the movement of plate/disk or poppet and the flow and related pressure drop through the valves. Such coefficients are often determined in an experimental way in order to have a simulation closer to the real operating conditions. For the flow coefficients it is also possible today to use theoretical programs capable of determining the needed values in a quick and economical way. Some investigations have been carried out to determine the values for certain geometries of poppet valves. The results of the theory have been compared with some experimental tests. The good agreement between the various methods indicates the most suitable procedure to be applied in order to have reliable data. The advantage is evident as the time necessary for the theoretical procedure is faster and less expensive. This is of significant importance at the time of the design and also in case of a need to provide timely technical support for the operating behavior of the valves. Particularly for LDPE, the optimization of all the parameters is strongly necessary. The fatigue stresses of cylinder heads and valve bodies have to match in fact with gas passage turbulence and pressure drop, added to the mechanical behavior of the poppet valve components.


2021 ◽  
pp. 58-58
Author(s):  
Farshad Panahizadeh ◽  
Mahdi Hamzehei ◽  
Mahmood Farzaneh-Gord ◽  
Villa Ochoa

Absorption chillers are one of the most used equipment in industrial, commercial, and domestic applications. For the places where high cooling is required, they are utilized in a network to perform the cooling demand. The main objective of the current study was to find the optimum operating conditions of a network of steam absorption chillers according to energy and economic viewpoints. Firstly, energy and economic analysis and modeling of the absorption chiller network were carried out to have a deep understanding of the network and investigate the effects of operating conditions. Finally, the particle swarm optimization search algorithm was employed to find an optimum levelized total costs of the plant. The absorption chiller network plant of the Marun Petrochemical Complex in Iran was selected as a case study. To verify the simulation results, the outputs of energy modeling were compared with the measured values. The comparison with experimental results indicated that the developed model could predict the working condition of the absorption chiller network with high accuracy. The economic analysis results revealed that the levelized total costs of the plant is 1730 $/kW and the payback period is three years. The optimization findings indicated that working at optimal conditions reduces the levelized total costs of the plant by 8.5%, compared to the design condition.


Volume 3 ◽  
2004 ◽  
Author(s):  
Stephen Skelley

Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device — a derivative of the six-component wind tunnel balance — senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This “rotating balance” was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 × 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance’s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device’s bandwidth to approximately 50 Hertz. Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device’s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed: symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional cavitation modes at lower inlet pressures, these conditions proved unreachable with the rotating balance installed due to the intense dynamic environment. The sensed radial load was less influenced by flow coefficient than by cavitation number or cavitation mode although the flow coefficient range was relatively narrow. Transition from symmetric tip vortex to alternate-blade cavitation corresponded to changes in both radial load magnitude and radial load orientation relative to the inducer. Sensed moments indicated that the effective load center moved downstream during this change in cavitation mode. An occurrence of “higher-order cavitation” was also detected in both the stationary pressures and the rotating balance data although the frequency of the phenomena was well above the reliable bandwidth of the rotating balance. In summary the experimental tests proved both the concept and device’s capability despite the limitations and confirmed that hydrodynamically-induced forces and moments develop in response to the unbalanced pressure field, which is, in turn, a product of the cavitation environment.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arash Shahin ◽  
Ashraf Labib ◽  
Ali Haj Shirmohammadi ◽  
Hadi Balouei Jamkhaneh

PurposeThe aim of this study is to develop a 3D model of decision- making grid (DMG) considering failure detection rate.Design/methodology/approachIn a comparison between DMG and failure modes and effects analysis (FMEA), severity has been assumed as time to repair and occurrence as the frequency of failure. Detection rate has been added as the third dimension of DMG. Nine months data of 21 equipment of casting unit of Mobarakeh Steel Company (MSC) has been analyzed. Then, appropriate condition monitoring (CM) techniques and maintenance tactics have been suggested. While in 2D DMG, CM is used when downtime is high and frequency is low; its application has been developed for other maintenance tactics in a 3D DMG.FindingsFindings indicate that the results obtained from the developed DMG are different from conventional grid results, and it is more capable in suggesting maintenance tactics according to the operating conditions of equipment.Research limitations/implicationsIn failure detection, the influence of CM techniques is different. In this paper, CM techniques have been suggested based on their maximum influence on failure detection.Originality/valueIn conventional DMG, failure detection rate is not included. The developed 3D DMG provides this advantage by considering a new axis of detection rate in addition to mean time to repair (MTTR) and failure frequency, and it enhances maintenance decision-making by simultaneous selection of suitable maintenance tactics and condition-monitoring techniques.


2018 ◽  
Author(s):  
Marti Lopez ◽  
Luke Broderick ◽  
John J Carey ◽  
Francesc Vines ◽  
Michael Nolan ◽  
...  

<div>CO2 is one of the main actors in the greenhouse effect and its removal from the atmosphere is becoming an urgent need. Thus, CO2 capture and storage (CCS) and CO2 capture and usage (CCU) technologies are intensively investigated as technologies to decrease the concentration</div><div>of atmospheric CO2. Both CCS and CCU require appropriate materials to adsorb/release and adsorb/activate CO2, respectively. Recently, it has been theoretically and experimentally shown that transition metal carbides (TMC) are able to capture, store, and activate CO2. To further improve the adsorption capacity of these materials, a deep understanding of the atomic level processes involved is essential. In the present work, we theoretically investigate the possible effects of surface metal doping of these TMCs by taking TiC as a textbook case and Cr, Hf, Mo, Nb, Ta, V, W, and Zr as dopants. Using periodic slab models with large</div><div>supercells and state-of-the-art density functional theory based calculations we show that CO2 adsorption is enhanced by doping with metals down a group but worsened along the d series. Adsorption sites, dispersion and coverage appear to play a minor, secondary constant effect. The dopant-induced adsorption enhancement is highly biased by the charge rearrangement at the surface. In all cases, CO2 activation is found but doping can shift the desorption temperature by up to 135 K.</div>


Author(s):  
Erick Kim ◽  
Kamjou Mansour ◽  
Gil Garteiz ◽  
Javeck Verdugo ◽  
Ryan Ross ◽  
...  

Abstract This paper presents the failure analysis on a 1.5m flex harness for a space flight instrument that exhibited two failure modes: global isolation resistances between all adjacent traces measured tens of milliohm and lower resistance on the order of 1 kiloohm was observed on several pins. It shows a novel method using a temperature controlled air stream while monitoring isolation resistance to identify a general area of interest of a low isolation resistance failure. The paper explains how isolation resistance measurements were taken and details the steps taken in both destructive and non-destructive analyses. In theory, infrared hotspot could have been completed along the length of the flex harness to locate the failure site. However, with a field of view of approximately 5 x 5 cm, this technique would have been time prohibitive.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


Sign in / Sign up

Export Citation Format

Share Document