Molecular Dynamics Simulations of Dialkyl Carbocyanine Dyes in a DPPC Bilayer: Atomistic Insights Into Single Molecule Fluorescence

Author(s):  
Ramachandra Gullapalli ◽  
Melik Demirel ◽  
Peter J. Butler

Our group uses di-alkyl carbocyanine dyes to detect force-induced membrane perturbation in mechanotransduction studies (Butler et al 2000). These dyes are also used extensively in single molecule spectroscopic techniques to infer dynamics of native membrane lipids. However, the precise distribution and orientation of the dye in a bilayer and how well the dye dynamics mimic native lipid dynamics are not known. Thus we present the results of a 40 nanosecond molecular dynamics simulation of a fully hydrated bilayer containing 0, 2, or 4 molecules of 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI-C18) and 128 molecules of dipalmitoylphosphatidyl choline (DPPC).

2020 ◽  
Author(s):  
Vadhana Varadarajan ◽  
Rajat Desikan ◽  
K. G. Ayappa

Infections in many virulent bacterial strains are triggered by the release of pore forming toxins (PFTs), which form oligomeric transmembrane pore complexes on the target plasma membrane. The spatial extent of the perturbation to the surrounding lipids during pore formation is relatively unexplored. Using all-atom molecular dynamics simulations, we investigate the changes in the structure and dynamics of lipids in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer in the presence of contrasting PFTs. Cytolysin A (ClyA) an α toxin with its inserted wedge shaped bundle of inserted α helices induces significant asymmetry across the membrane leaflets in comparison with α hemolysin (AHL) a β toxin. Despite the differences in hydrophobic mismatch and uniquely different topologies of the two oligomers, perturbation to lipid order as reflected in the tilt angle and order parameters, and membrane thinning is short ranged, lying within ∼ 2.5 nm from the periphery of the either pore complex, commensurate with distances typically associated with van der Waals forces. In contrast, the spatial extent of perturbations to the lipid dynamics extend outward to at least 4 nm for both proteins, and the continuous survival probabilities reveal the presence of a tightly bound shell of lipids in this region. Displacement probability distributions show long tails and the distinctly non-Gaussian features reflect the induced dynamic heterogeneity. A detailed profiling of the protein-lipid contacts with residues tyrosine, tryptophan, lysine and arginine show increased non-polar contacts in the cytoplasmic leaflet for both PFTs, with a higher number of atomic contacts in the case of AHL in the extracellular leaflet due to the mushroom-like topology of the pore complex. The short ranged nature of the perturbations observed in this simple one component membrane suggests an inherent plasticity of membrane lipids enabling recovery of structure and membrane fluidity even in the presence of these large oligomeric trans-membrane protein assemblies. This observation has implications in membrane repair processes such as budding or vesicle fusion events used to mitigate PFT virulence, where the underlying lipid dynamics and fluidity in the vicinity of the pore complex are expected to play an important role.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


RSC Advances ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 5507-5515
Author(s):  
Liang Song ◽  
Feng-Qi Zhao ◽  
Si-Yu Xu ◽  
Xue-Hai Ju

The bimolecular and fused ring compounds are found in the high-temperature pyrolysis of NONA using ReaxFF molecular dynamics simulations.


2018 ◽  
Vol 32 (18) ◽  
pp. 1840001 ◽  
Author(s):  
Ming Li ◽  
Zhong-Can Ou-Yang ◽  
Yao-Gen Shu

Kinesin is a two-headed linear motor for intracellular transport. It can walk a long distance in a hand-over-hand manner along the track before detaching (i.e., high processivity), and it consumes one ATP molecule for each step (i.e., tight mechanochemical coupling). The mechanisms of the coordination of its two heads and the mechanochemical coupling are the central issues of numerous researches. A few advances have been made in recent decades, thanks to the development of single-molecule technologies and molecular dynamics simulations. In this paper, we review some progress of the studies on the kinematics, energetics, coordination mechanism, mechanochemical mechanism of kinesin. We also present a personal perspective on the future studies of kinesin.


2017 ◽  
Vol 890 ◽  
pp. 252-259
Author(s):  
Le Wang ◽  
Guan Cheng Jiang ◽  
Xin Lin ◽  
Xian Min Zhang ◽  
Qi Hui Jiang

Molecular dynamics simulations are used to study the dissociation inhibiting mechanism of lecithin for structure I hydrates. Adsorption characteristics of lecithin and PVP (poly (N-vinylpyrrolidine)) on the hydrate surfaces were performed in the NVT ensemble at temperatures of 277K and the hydrate dissociation process were simulated in the NPT ensemble at same temperature. The results show that hydrate surfaces with lecithin is more stable than the ones with PVP for the lower potential energy. The conformation of lecithin changes constantly after the balanced state is reached while the PVP molecular dose not. Lecithin molecule has interaction with lecithin nearby and hydrocarbon-chains of lecithin molecules will form a network to prevent the diffusion of water and methane molecules, which will narrow the available space for hydrate methane and water movement. Compared with PVP-hydrate simulation, analysis results (snapshots and mass density profile) of the dissociation simulations show that lecithin-hydrate dissociates more slowly.


1994 ◽  
Vol 373 ◽  
Author(s):  
Roger E. Stoller

AbstractA series of high-energy, up to 20 keV, displacement cascades in iron have been investigated for times up to 200 ps at 100 K using the method of molecular dynamics simulation. Thesimulations were carried out using the MOLDY code and a modified version of the many-bodyinteratomic potential developed by Finnis and Sinclair. The paper focuses on those results obtained at the highest energies, 10 and 20 keV. The results indicate that the fraction of the Frenkel pairs surviving in-cascade recombination remains fairly high in iron and that the fraction of the surviving point defects that cluster is lower than in materials such as copper. In particular, vacancy clustering appears to be inhibited in iron. Some of the interstitial clusters were observed to exhibit an unexpectedly complex, three-dimensional morphology. The observations are discussed in terms of their relevance to microstructural evolution and mechanical property changes in irradiated iron-based alloys.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


2021 ◽  
Author(s):  
Hugo Arellano-Santoyo ◽  
Rogelio A Hernandez-Lopez ◽  
Emma Stokasimov ◽  
Ray YR Wang ◽  
David Pellman ◽  
...  

The microtubule (MT) cytoskeleton is central to cellular processes including axonal growth, intracellular transport, and cell division, all of which rely on precise spatiotemporal control of MT organization. Kinesin-8s play a key role in regulating MT length by combining highly processive directional motility with MT-end disassembly. However, how kinesin-8 switches between these two apparently opposing activities remains unclear. Here, we define the structural features underlying this molecular switch through cryo-EM analysis of the yeast kinesin-8, Kip3 bound to MTs, and molecular dynamics simulations to approximate the complex of Kip3 with the curved tubulin state found at the MT plus-end. By integrating biochemical and single-molecule biophysical assays, we identified specific intra- and intermolecular interactions that modulate processive motility and MT disassembly. Our findings suggest that Kip3 undergoes conformational changes in response to tubulin curvature that underlie its unique ability to interact differently with the MT lattice than with the MT-end.


2021 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Lukman Hakim ◽  
Irsandi Dwi Oka Kurniawan ◽  
Ellya Indahyanti ◽  
Irwansyah Putra Pradana

The underlying principle of surface wettability has obtained great attentions for the development of novel functional surfaces. Molecular dynamics simulations has been widely utilized to obtain molecular-level details of surface wettability that is commonly quantified in term of contact angle of a liquid droplet on the surface. In this work, the sensitivity of contact angle calculation at various degrees of surface hydrophilicity to the adopted potential models of water: SPC/E, TIP4P, and TIP5P, is investigated. The simulation cell consists of a water droplet on a structureless surface whose hydrophilicity is modified by introducing a scaling factor to the water-surface interaction parameter. The simulation shows that the differences in contact angle described by the potential models are systematic and become more visible with the increase of the surface hydrophilicity. An alternative method to compute a contact angle based on the height of center-of-mass of the droplet is also evaluated, and the resulting contact angles are generally larger than those determined from the liquid-gas interfacial line.


2021 ◽  
Author(s):  
Soumya Lipsa Rath ◽  
Madhusmita Tripathy ◽  
Nabanita Mandal

Enveloped viruses, in general, have several transmembrane proteins and glycoproteins, which assist the virus in entry and attachment onto the host cells. These proteins also play a significant role in determining the shape and size of the newly formed virus particles. The lipid membrane and the embedded proteins affect each other in non-trivial ways during the course of the viral life cycle. Unravelling the nature of the protein-protein and protein-lipid interactions, under various environmental and physiological conditions, could therefore prove to be crucial in development of therapeutics. Here, we study the M protein of SARS-CoV-2 to understand the effect of temperature on the properties of the protein-membrane system. The membrane embedded dimeric M proteins were studied using atomistic and coarse-grained molecular dynamics simulations at temperatures ranging between 10 and 50 ˚C. While temperature induced fluctuations should be monotonic, we observe a steady rise in the protein dynamics up to 40 ˚C, beyond which it surprisingly reverts back to the low temperature behaviour. Detailed investigation reveals disordering of the membrane lipids in the presence of the protein, which induces additional curvature around the transmembrane region. Coarse-grained simulations indicate temperature dependent aggregation of M protein dimers. Our study clearly indicates that the dynamics of membrane lipids and integral M protein of SARS-CoV-2 enables it to better associate and aggregate only at a certain temperature range (i.e., ~30 to 40 ˚C). This can have important implications in the protein aggregation and subsequent viral budding/fission processes.   


Sign in / Sign up

Export Citation Format

Share Document