Mechanical Property Determination of Bone Through Nanoindentation Testing and Finite Element Simulation

Author(s):  
Jingzhou Zhang ◽  
Timothy C. Ovaert

Measurement of the mechanical properties of bone is important for estimation of the local mechanical response of bone cells to loading experienced on a larger scale. An increasing number of measurements of the hardness and Young’s modulus of bone tissue have been undertaken using nanoindentation [1,2]. However, testing conditions have not been uniform. The interactions that can occur between testing condition parameters were considered in this study, and average hardness and Young’s modulus were obtained as a function of indentation creep testing conditions (maximum load, loading/unloading rate (both equal in magnitude), load-holding time, and indenter shape).

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 328
Author(s):  
Kamil Anasiewicz ◽  
Józef Kuczmaszewski

This article is an evaluation of the phenomena occurring in adhesive joints during curing and their consequences. Considering changes in the values of Young’s modulus distributed along the joint thickness, and potential changes in adhesive strength in the cured state, the use of a numerical model may make it possible to improve finite element simulation effects and bring their results closer to experimental data. The results of a tensile test of a double overlap adhesive joint sample, performed using an extensometer, are presented. This test allowed for the precise determination of the shear modulus G of the cured adhesive under experimental conditions. Then, on the basis of the research carried out so far, a numerical model was built, taking the differences observed in the properties of the joint material into account. The stress distribution in a three-zone adhesive joint was analyzed in comparison to the standard numerical model in which the adhesive in the joint was treated as isotropic. It is proposed that a joint model with three-zones, differing in the Young’s modulus values, is more accurate for mapping the experimental results.


Author(s):  
SHULEI SUN ◽  
XIONGQI PENG ◽  
ZAOYANG GUO

Polymer matrix filled with ferromagnetic particles is a class of smart materials whose mechanical properties can be changed under different magnetic field. They are usually referred to as magnetorheological elastomers (MREs). A finite element simulation was presented to describe the mechanical behavior of MREs with the nonlinearity of the particle magnetization being incorporated. By introducing the Maxwell stress tensor, a representative volume element (RVE) was proposed to calculate the Young's modulus and shear modulus of MREs due to the applied magnetic field. The influences of the applied magnetic field and the particle volume fractions in the shear modulus and Young's modulus were studied. Results show that the shear modulus increases with the magnitude of the applied magnetic field, while the Young's modulus decreases.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Peida Hao ◽  
Yanping Liu ◽  
Yuanming Du ◽  
Yuefei Zhang

In situ nanoindentation was employed to probe the mechanical properties of individual polycrystalline titania (TiO2) microspheres. The force-displacement curves captured by a hybrid scanning electron microscope/scanning probe microscope (SEM/SPM) system were analyzed based on Hertz’s theory of contact mechanics. However, the deformation mechanisms of the nano/microspheres in the nanoindentation tests are not very clear. Finite element simulation was employed to investigate the deformation of spheres at the nanoscale under the pressure of an AFM tip. Then a revised method for the calculation of Young’s modulus of the microspheres was presented based on the deformation mechanisms of the spheres and Hertz’s theory. Meanwhile, a new force-displacement curve was reproduced by finite element simulation with the new calculation, and it was compared with the curve obtained by the nanoindentation experiment. The results of the comparison show that utilization of this revised model produces more accurate results. The calculated results showed that Young’s modulus of a polycrystalline TiO2microsphere was approximately 30% larger than that of the bulk counterpart.


2020 ◽  
Vol 111 (3-4) ◽  
pp. 695-709
Author(s):  
H. Gonabadi ◽  
A. Yadav ◽  
S. J. Bull

Abstract 3D printing by fused filament fabrication (FFF) provides an innovative manufacturing method for complex geometry components. Since FFF is a layered manufacturing process, effects of process parameters are of concern when plastic materials such as polylactic acid (PLA), polystyrene and nylon are used. This study explores how the process parameters, e.g. build orientation and infill pattern/density, affect the mechanical response of PLA samples produced using FFF. Digital image correlation (DIC) was employed to get full-field surface-strain measurements. The results show the influence of build orientation and infill density is significant. For on-edge orientation, the tensile strength and Young’s modulus were 55 MPa and 3.5 GPa respectively, which were about 91% and 40% less for the upright orientation, demonstrating a significant anisotropy. The tensile strength and Young’s modulus increased with increasing infill density. In contrast, different infill patterns have no significant effect. Considering the influence of build orientation, based on the experimental results, a constitutive model derived from the laminate plate theory was employed. The material parameters were determined by tensile tests. Results demonstrated a reasonable agreement between the experimental data and the predictive model. Similar anisotropy to tension was observed in shear tests; shear modulus and shear strength for 45° flat orientation were about 1.55 GPa and 36 MPa, whereas for upright specimens they were about 0.95 GPa and 18 MPa, respectively. The findings provide a framework for systematic mechanical characterisation of 3D-printed polymers and potential ways of choosing process parameters to maximise performance for a given design.


2009 ◽  
Vol 9 ◽  
pp. 1382-1393 ◽  
Author(s):  
Jürgen Paletta ◽  
Karla Erffmeier ◽  
Christina Theisen ◽  
Daniel Hussain ◽  
Joachim H. Wendorff ◽  
...  

The aim of this study was to characterize the influence of functionalization of synthetic poly-(L-lactic acid) (PLLA) nanofibers on mechanical properties such as maximum load, elongation, and Young's modulus. Furthermore, the impact of osteoblast growth on the various nanofiber scaffolds stability was determined. Nanofiber matrices composed of PLLA, PLLA-collagen, or BMP-2–incorporated PLLA were produced from different solvents by electrospinning. Standardized test samples of each nanofiber scaffold were subjected to failure protocol before or after incubation in the presence of osteoblasts over a period of 22 days under osteoinductive conditions. PLLA nanofibers electrospun from hexafluoroisopropanol (HFIP) showed a higher strain and tended to have increased maximum loads and Young's modulus compared to PLLA fibers spun from dichloromethane. In addition, they had a higher resistance during incubation in the presence of cells. Functionalization by incorporation of growth factors increased Young's modulus, independent of the solvent used. However, the incorporation of growth factors using the HFIP system resulted in a loss of strain. Similar results were observed when PLLA was blended with different ratios of collagen. Summarizing the results, this study indicates that different functionalization strategies influence the mechanical stability of PLLA nanofibers. Therefore, an optimization of nanofibers should not only account for the optimization of biological effects on cells, but also has to consider the stability of the scaffold.


2021 ◽  
Vol 22 (2) ◽  
pp. 624
Author(s):  
Juan Carlos Gil-Redondo ◽  
Jagoba Iturri ◽  
Felipe Ortega ◽  
Raquel Pérez-Sen ◽  
Andreas Weber ◽  
...  

Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young’s modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young’s modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.


Author(s):  
Biao Yuan ◽  
Zhimin Liang ◽  
Zongyuan Yang ◽  
Fei Shen ◽  
Da Xu ◽  
...  

AbstractSn–Sb lead-free solders are considered to substitute the tin–lead solders due to their great mechanical properties. At room temperature, the mechanical properties of Ni/Au/Sn–5Sb/Au/Ni and Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni linear solder joints were investigated by nanoindentation experiments at different loads. The results showed that the Sn–Sb intermetallic compound (IMC) was distributed in the β-Sn matrix in Ni/Au/Sn–5Sb/Au/Ni solder joints. Co-addition of Cu and Ag resulted in the formation of the rod-shaped Cu6Sn5 and the fine granular Ag3Sn IMCs. At the same load and loading/unloading rate, the indentation depth and residual indentation morphologies of Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni solder joints were smaller than those of Ni/Au/Sn–5Sb/Au/Ni solder joints. The hardness of the two kinds of solder joints decreased with the increase in load, while the Young’s modulus was independent of load. In addition, compared to the Ni/Au/Sn–5Sb/Au/Ni solder joints, the hardness, Young’s modulus and stress exponents of Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni solder joints achieved an improvement due to the co-addition of Ag and Cu.


1979 ◽  
Vol 23 (04) ◽  
pp. 229-234
Author(s):  
Sarp Adali ◽  
Ibrahim Sadek

The best possible distributions of Young's modulus or the cross-sectional area or both are determined explicitly for a cantilevered Timoshenko beam which, for a given volume and end deflection, carries the maximum possible load at its free end. Closed-form solutions are given for the optimal height, width and/or Young's modulus functions. Numerical results are presented in graphical form. It is found that the inclusion of shear deformation decreases the efficiency of the optimal design, and that optimization with respect to Young's modulus in addition to shape increases the efficiency considerably in comparison with optimization of the shape only.


2008 ◽  
Vol 27 (6) ◽  
pp. 347-362 ◽  
Author(s):  
M.A. Rodriguez-Perez ◽  
J. Lobos ◽  
C.A. Perez-Muñoz ◽  
J.A. de Saja ◽  
L. Gonzalez ◽  
...  

This paper presents the production method and the compressive mechanical response at low strains for a collection of polyethylene foams with high densities and cell sizes in the microcellular range. The materials were produced using an improved compression moulding technique that allows and independent control of density and cell size. The materials had a relative density between 0.27 and 0.92, an homogeneous and multi-structured cellular structure with dense skin and foamed core and cell sizes in the range 30 to 100 microns. The Young's modulus decreased with density. For relative densities higher than 0.7, the reduced Young's modulus of the foams was higher than that of the solid. In addition, it has been proved that variations in the cell size at constant density did not influence the Young's modulus. The advantages of using these materials for the production of plastic pipes have been analysed. In comparison with a solid pipe a reduction of the weight of foamed pipes loaded in compression of up to 40% can be reached.


Sign in / Sign up

Export Citation Format

Share Document