Simultaneous Prediction of Musculo-Tendon, Joint Contact, Ligament and Bone Forces in the Lower Limb During Gait Using a One-Step Static Optimisation Procedure

Author(s):  
Florent Moissenet ◽  
Laurence Cheze ◽  
Raphaël Dumas

Instrumented prostheses, by measuring joint contact forces during a movement, give nowadays a unique opportunity to validate the ability of musculo-skeletal models in predicting internal forces. In this study, a rigid multi-body musculo-skeletal model, allowing computing the musculo-tendon, joint contact, ligament and bone forces all together by static optimisation, using a weighted criterion, is presented. The results show that the musculo-tendon forces are generally in accordance with the envelopes of the main peaks of the subject’s EMG signals and that the amplitudes and patterns of the predicted joint contact, ligament and bone forces are in a good agreement with the measurements and with the literature. By allowing the introduction of other forces than the musculo-tendon forces in the static optimisation, this study opens new horizons in order to better model the human physiology (e.g., joint pain).

Author(s):  
Benjamin J. Fregly ◽  
Yi-Chung Lin ◽  
Jonathan P. Walter ◽  
Justin W. Fernandez ◽  
Scott A. Banks ◽  
...  

Walking is important for human health, and independent ambulation predicts quality of life [1]. The study and treatment of neurological and joint disorders that inhibit walking would be more effective if muscle and joint forces could be determined reliably for individual patients. Knowledge of muscle forces is needed to characterize muscle coordination, which is a factor in neurological disorders such as cerebral palsy and stroke, while knowledge of joint contact forces is needed to characterize articular loading, which is a factor in bone and joint disorders such as osteoporosis and osteoarthritis. Reliable determination of these internal forces for individual patients would facilitate the design of customized surgical and rehabilitation treatments that maximize functional outcome.


2004 ◽  
Vol 20 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Kazunori Hase ◽  
Motoshi Kaya ◽  
Amy B. Zavatsky ◽  
Suzanne E. Halliday

Rowing ergometers can be found in most gyms and fitness centers, but many people who use them regularly have little or no instruction in rowing technique. It is not known whether nonrowers who regularly practice ergometer rowing are at risk of musculoskeletal problems. This study was done to quantify the differences in kinematics, kinetics, and musculoskeletal loading of competitive rowers and nonrowers during ergometer rowing. An experiment was performed to collect kinematic, external force, and EMG data during er-gometer rowing by 5 university-level competitive rowers and 5 nonrowers. Kinematic and external force data were input to a 3-D whole-body musculo-skeletal model which was used to calculate net joint forces and moments, muscle forces, and joint contact forces. The results showed that competitive rowers and nonrowers are capable of rowing an ergometer with generally similar patterns of kinematics and kinetics; however, there are some potentially important differences in how they use their legs and trunk. The competitive rowers generated higher model quadriceps (vastus) muscle forces and pushed harder against the foot cradle, extending their knees more and their trunks less than the nonrowers during the drive phase. They also had higher contact forces at the knee and higher peak lumbar and knee flexion moments. The ratio of average peak vastus force to average peak erector spinae force in the experienced rowers was 1.52, whereas it was only 1.18 in the nonexperienced rowers.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


Spine ◽  
2008 ◽  
Vol 33 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Christina A. Niosi ◽  
Derek C. Wilson ◽  
Qingan Zhu ◽  
Ory Keynan ◽  
David R. Wilson ◽  
...  

Author(s):  
G Virzì Mariotti ◽  
G Ficarra

The research reported in this paper aims to simulate the road-holding of a virtual vehicle using multi-body simulation to estimate both the contact forces between the tyre and ground and the roll motion when cornering. Furthermore, the effect of the characteristic angles on the variation in the forces of the tyre in contact with the ground is studied to determine optimal values for these angles. Emphasis is placed on an average-class vehicle, of which both the external dimensions and mass are chosen appropriately, with a McPherson suspension mounted on both the front and the rear. The characteristic values of the camber and toe-in angles, in both the front and the rear, are optimized for motion in the curve under constant traction. The results of numerical simulation are compared with results from the theory of stability in the curve (given the vertical configuration of the vehicle).


2010 ◽  
Vol 4 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Paola Formento Catalfamo ◽  
Gerardo Aguiar ◽  
Jorge Curi ◽  
Ariel Braidot

Previous research has shown that an increase in hamstring activation may compensate for anterior tibial transalation (ATT) in patients with anterior cruciate ligament deficient knee (ACLd); however, the effects of this compensation still remain unclear. The goals of this study were to quantify the activation of the hamstring muscles needed to compensate the ATT in ACLd knee during the complete gait cycle and to evaluate the effect of this compensation on quadriceps activation and joint contact forces. A two dimensional model of the knee was used, which included the tibiofemoral and patellofemoral joints, knee ligaments, the medial capsule and two muscles units. Simulations were conducted to determine the ATT in healthy and ACLd knee and the hamstring activation needed to correct the abnormal ATT to normal levels (100% compensation) and to 50% compensation. Then, the quadriceps activation and the joint contact forces were calculated. Results showed that 100% compensation would require hamstring and quadriceps activations larger than their maximum isometric force, and would generate an increment in the peak contact force at the tibiofemoral (115%) and patellofemoral (48%) joint with respect to the healthy knee. On the other hand, 50% compensation would require less force generated by the muscles (less than 0.85 of maximum isometric force) and smaller contact forces (peak tibiofemoral contact force increased 23% and peak patellofemoral contact force decreased 7.5% with respect to the healthy knee). Total compensation of ATT by means of increased hamstring activity is possible; however, partial compensation represents a less deleterious strategy.


2018 ◽  
Vol 34 (5) ◽  
pp. 419-423 ◽  
Author(s):  
Christopher M. Saliba ◽  
Allison L. Clouthier ◽  
Scott C.E. Brandon ◽  
Michael J. Rainbow ◽  
Kevin J. Deluzio

Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a noninvasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis, and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) root mean square differences of 0.17 (0.05) bodyweight compared with the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.


Sign in / Sign up

Export Citation Format

Share Document