The Effect of Lubricant Viscosity-Temperature Characteristics on the Performance of Plain Journal Bearings

Author(s):  
Waldemar M. Dmochowski ◽  
Martin N. Webster

Experimental and analytical results of bearing friction loss, operating temperature, and oil gap thickness are presented comparing performance characteristics of bearings operating with the different lubricants. The lubricants were blended using a variety of mineral and synthetic base stocks to achieve a range of viscosity-temperature characteristics. The results show that the test bearings running with higher viscosity index (VI) lubricants generated slightly lower bearing surface temperatures than those generated using a low VI lubricant. The high VI lubricant also reduced the total power losses by up to 10%. These gains are achieved with little or no change in the minimum oil film thickness.

1974 ◽  
Vol 96 (1) ◽  
pp. 226-232 ◽  
Author(s):  
C. Cusano ◽  
T. F. Conry

The design problem is formulated for multi-recess hydrostatic journal bearings with a design criterion of minimum total power loss. The design is subject to the constraints of constant ratio of the recess area to the total bearing area and maximum load capacity for a given recess geometry. The L/D ratio, eccentricity ratio, ratio of recess area to total bearing area, and shaft rotational speed are considered as parameters. The analysis is based on the bearing model of Raimondi and Boyd [1]. This model is generally valid for low-to-moderate speeds and a ratio of recess area-to-total bearing area of approximately 0.5 or greater. Design charts are presented for bearings having a ratio of recess area-to-total bearing area of 0.6 and employing capillary and orifice restrictors, these being the most common types of compensating elements. A design example is given to illustrate the use of the design charts.


This report largely focused on the influence on the delivery system of the Renewable Distributed Generations (RDGs). DG's intercourse showed that the suggested the traditional method of radial distribution into a multiple DG scheme. The main contribution of this study is to reduce total power losses and increase the distribution system's power quality using RDGs. The Loss sensitivity factor (LSF) is used to find the RDGs. A heuristic search novel The Modified Bat Algorithm (MBA) is used to define the amount of the RDGs. MBA is largely focused on microbats' higher elastic modulus. The proposed MBA is measured on standard bus test systems IEEE 33 and 69.


Author(s):  
Michael Westman ◽  
Ove Isaksson

This paper is concerned with forest logging machinery. A great deal of final felling in cut-to-length method done by harvester, which fells, delimbs and cuts the trees to pre-selected lengths. Two important criteria of a harvester head are that it has to be energy efficient and it has to be as fast as possible. To minimize losses in hydraulic systems the main demand is to reduce pressure losses in high power valves and outer components as much as possible. Each orifice in the flow path results in power losses. This work is an experimental study on power losses and acceleration of hydraulic motor in a system with long hoses. Main hydraulic components included are hydraulic pump, cartridge valve, pipe line and hydraulic motor. The results show that pre-activating the pump improves the system speed. To reduce losses, optimization of valve block, cartridge valve orifices are needed. Accumulators are favourable if combined with high stand-by pressure.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
A. Dindar ◽  
K. Chaudhury ◽  
I. Hong ◽  
A. Kahraman ◽  
C. Wink

Abstract In this study, an experimental methodology is presented to separate various components of the power loss of a gearbox. The methodology relies on two separate measurements. One is designed to measure total power loss of a gearbox housing a single spur gear pair under both loaded and unloaded conditions such that load-independent (spin) and load-dependent (mechanical) components can be separated. With the assumption that gear pair and rolling element bearings constitute the bulk of the gearbox power loss, a second measurement system designed to quantify rolling element bearing losses is proposed. With this setup, spin and mechanical power losses of rolling element bearings used in the gearbox experiments are measured. Combining the sets of gearbox and bearing data, power loss components attributable to the gear pair and rolling element bearings are quantified as a function of speed and torque. The results indicate that all gear and bearing related components are significant and a methodology such as the one proposed in this study is warranted.


2019 ◽  
Vol 6 (2) ◽  
pp. 7
Author(s):  
I. K. A. Wijaya ◽  
R. S. Hartati ◽  
I W. Sukerayasa

Saba feeder is a feeder who supplies 78 distribution transformers with feeder length 38,959 kms, through this Saba feeder electrical energy is channeled radially to each distribution substation. In 2017 the voltage shrinkage at Saba feeder was 9.88% (18,024 kV) while the total power loss was 445.5 kW. In this study an attempt was made to overcome the voltage losses and power losses using the method of optimizing bank capacitors with genetic algorithms and network reconfiguration. The best solution obtained from this study will be selected for repair of voltage losses and power losses in Saba feeders. The results showed that by optimizing bank capacitors using genetic algorithms, the placement of capacitor banks was placed on bus 23 (the channel leading to the BB0024 transformer) and successfully reduced the power loss to 331.7 kW. The network reconfiguration succeeded in fixing the voltage on the Saba feeder with a voltage drop of 4.75% and a total power loss of 182.7 kW. With the combined method, reconfiguration and optimization of bank capacitors with genetic algorithms were obtained on bus 27 (channel to transformer BB0047) and managed to reduce power losses to 143 kW.


2015 ◽  
Vol 14 (2) ◽  
pp. 27
Author(s):  
I Made Gusmara Nusaman ◽  
I Wayan Sukerayasa ◽  
Rukmi Sari Hartati

The distributed generation technology or in this case abbreviated DG is a kind of power plants with small scale which prioritizes the utilization of renewable energy resources such as wind, water, solar, geothermal, ocean waves (Wave Energy), ocean currents (Ocean Current Energy), biomass, and biogass to produce the electrical energy with range of power generation between 1 kW-10 MW. One of the DG in Bali and still in operation is the garbage power plant which located in Suwung, South Denpasar. An analysis has been done using load flow analysis and reliability assessment to determine the effect of DG interconnection against the power losses and the level of reliability on the Serangan feeder. Based on the research that has been done, DG intercon-nection on the Serangan feeder decrease the power losses and increase the reliability and it can visible from the acquisition of SAIFI and SAIDI index which decreased. The best location of DG interconnection to get low of the power losses and the high level of reliability is at 97% from the total length of the feeder. At that location the power losses is decrease as big as 4.5 kW or 11.25% of the total power lossess without the DG interconnection and decrease of the SAIFI and SAIDI index respectively to 0.1 failure/customers/year and 1.4150 hour/ customer/year


Author(s):  
Ducai Wang

Engine journal bearings are now routinely analysed using elasto-hydrodynamic lubrication (EHL) methods [1,2]. This analysis technique takes into account interaction of the hydrodynamic film with the elastic distortion produced in both the bearing and the journal. It has proved a robust analytic tool for designers in predicting the value and location of such parameters as minimum oil film thickness and maximum film pressure. However, for some very heavily loaded cases, the normal EHL analysis technique may fail to produce realistic solutions. Due to ‘cusping’ of the bearing surface under extreme pressures the edges of bearing may be predicted to penetrate the journal surface leading to a ‘negative’ film thickness. In reality, the surfaces will interact and a ‘running-in’ process will result in subtle changes to the bearing surface profile such that a hydrodynamic film can be maintained across the whole bearing surface. This study introduces a contact-wear model which attempts to model this situation.


Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 37 ◽  
Author(s):  
Omar H. Abdalla ◽  
Hady H. Fayek ◽  
A. M. Abdel Ghany

This paper presents secondary voltage control by extracting reactive power from renewable power technologies to control load buses voltage in a power system at different operating conditions. The study is performed on a 100% renewable 14-bus system. Active and reactive powers controls are considered based on grid codes of countries with high penetration levels of renewable energy technologies. A pilot bus is selected in order to implement the secondary voltage control. The selection is based on short-circuit calculation and sensitivity analysis. An optimal Proportional Integral Derivative (PID) voltage controller is designed using genetic algorithm. A comparison between system with and without secondary voltage control is presented in terms of voltage profile and total power losses. The optimal voltage magnitudes at busbars are calculated to achieve minimum power losses using optimal power flow. The optimal placement of Phasor Measurement Units (PMUs) is performed in order to measure the voltage magnitude of buses with minimum cost. Optimization and simulation processes are performed using DIgSILENT and MATLAB software applications.


Sign in / Sign up

Export Citation Format

Share Document