Comparison of etch rates of silicon nitride, silicon dioxide, and polycrystalline silicon upon O2 dilution of CF4 plasmas

Author(s):  
Paul E. Riley
1996 ◽  
Vol 449 ◽  
Author(s):  
C. B. Vartuli ◽  
J. W. Lee ◽  
J. D. MacKenzie ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

ABSTRACTICl/Ar ECR discharges provide the fastest dry etch rates reported for GaN, 1.3 µm/min. These rates are much higher than with Cl2/Ar, CH4/H2/Ar or other plasma chemistries. InN etch rates up to 1.15 µm/min and 0.7 µm/min for In0.5Ga0.5N are obtained, with selectivities up to 5 with no preferential loss of N at low rf powers and no significant residues remaining. The rates are much lower with IBr/Ar, ranging from 0.15 µm/min for GaN to 0.3 µm/min for InN. There is little dependence on microwave power for either chemistry because of the weakly bound nature of IC1 and IBr. In all cases the etch rates are limited by the initial bond breaking that must precede etch product formation and there is a good correlation between materials bond energy and etch rate. The fact that low microwave power can be employed is beneficial from the viewpoint that photoresist masks are stable under these conditions, and there is no need for use of silicon nitride or silicon dioxide. Selectivities for GaN over A1N with IC1 and IBr are still lower than with Cl2- only.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yiingqi Shang ◽  
Hongquan Zhang ◽  
Yan Zhang

Aimed at the problem of the small wet etching depth in sapphire microstructure processing technology, a multilayer composite mask layer is proposed. The thickness of the mask layer is studied, combined with the corrosion rate of different materials on sapphire in the sapphire etching solution, different mask layers are selected for the corrosion test on the sapphire sheet, and then the corrosion experiment is carried out. The results show that at 250 °C, the choice is relatively high when PECVD (Plasma Enhanced Chemical Vapor Deposition) is used to make a double-layer composite film of silicon dioxide and silicon nitride. When the temperature rises to 300 °C, the selection ratio of the silicon dioxide layer grown by PECVD is much greater than that of the silicon nitride layer. Therefore, under high temperature conditions, a certain thickness of silicon dioxide can be used as a mask layer for deep cavity corrosion.


1983 ◽  
Vol 23 ◽  
Author(s):  
T. P. Smith ◽  
P. J. Stiles ◽  
W. M. Augustyniak ◽  
W. L. Brown ◽  
D. C. Jacobson ◽  
...  

ABSTRACTFormation of buried insulating layers and redistribution of impurities during annealing are important processes in new semiconductor device technologies. We have studied pulsed ruby laser and furnace annealing of high dose (D>1017 N/cm2) 50 KeV nitrogen implanted silicon. Using He Back scattering and channeling, X-ray diffraction, transmission electron microscopy, and infrared transmission spectroscopy, we have compared liquid and solid phase regrowth, diffusion, impurity segregation and nitride formation. As has been previously reported, during furnace annealing at or above 1200C nitrogen redistributes and forms a polycrystalline silicon nitride (Si3N4 ) layer. [1–4] In contrast, pulsed laser annealing produces a buried amorphous silicon nitride layer filled with voids or bubbles below a layer of polycrystalline silicon.


1995 ◽  
Vol 67 (13) ◽  
pp. 1902-1904 ◽  
Author(s):  
J. Staffa ◽  
D. Hwang ◽  
B. Luther ◽  
J. Ruzyllo ◽  
R. Grant

1992 ◽  
Vol 96 (7) ◽  
pp. 3029-3033 ◽  
Author(s):  
Akitomo Tachibana ◽  
Yuzuru Kurosaki ◽  
Hiroyuki Fueno ◽  
Toshiaki Sera ◽  
Tokio Yamabe

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ljubinko Timotijevic ◽  
Irfan Fetahovic ◽  
Djordje Lazarevic ◽  
Milos Vujisic

Effects of exposing several insulators, commonly used for various purposes in integrated circuits, to beams of protons have been investigated. Materials considered include silicon dioxide, silicon nitride, aluminium nitride, alumina, and polycarbonate (Lexan). The passage of proton beams through ultrathin layers of these materials has been modeled by Monte Carlo simulations of particle transport. Parameters that have been varied in simulations include proton energy and insulating layer thickness. Materials are compared according to both ionizing and nonionizing effects produced by the passage of protons.


Sign in / Sign up

Export Citation Format

Share Document