Design of a compact atomic force microscope to enhance scanning speed

2004 ◽  
Author(s):  
Heung-Keun Park ◽  
Yong K. Hong ◽  
Sung Q. Lee ◽  
Kee S. Moon
2021 ◽  
Vol 17 ◽  
Author(s):  
Ke Xu ◽  
Qiang An ◽  
Peng Li

: The atomic force microscope (AFM) is widely used in many fields such as biology, materials, and physics due to its advantages of simple sample preparation, high-resolution topography measurement and wide range of applications. However, the low scanning speed of traditional AFM limits its dynamics process monitoring and other further application. Therefore, the improvement of AFM scanning speed has become more and more important. In this review, the working principle of AFM is first proposed. Then, we introduce the improvements of cantilever, drive mechanism, and control method of the high-speed atomic force microscope (HS-AFM). Finally, we provide the next developments of HS-AFM.


2013 ◽  
Vol 829 ◽  
pp. 831-835
Author(s):  
Seyed Abbas Shahmoradi Zavareh ◽  
Hamid Akbari Moayyer ◽  
Mohammad Amin Ahouei

Due to involvement of various fields of engineering and bio researchers in nanoprojects and their need in achieving certain layout of nanoparticles (NPs) in many research studies, considerable attention is paid to nanomanipulation nowadays. The present experimental study employs Atomic Force Microscope (AFM) in order to push gold nanoparticles on a highly flat mica surface. A silicon probe in contact mode is used to both image and manipulate nanoparticles and Topo and L-R images have been obtained to show the successes of manipulation when proper conditions are fulfilled. The effect of AFM parameters such as applied force, scanning speed and number of pixels of image on nanomanipulation efficiency is investigated. Moreover, the tip is moved along a special path which can be set by software to study manipulation of nanoparticles aggregates. Finally, possible applications of nanomanipulation in nanomechanics, nanoelectronics, nanomaterials and bio-technology are reported and further experimental research works on nanomanipulation are proposed.


2017 ◽  
Vol 260 ◽  
pp. 99-104 ◽  
Author(s):  
Vytautas Bučinskas ◽  
Andrius Dzedzickis ◽  
Ernestas Šutinys ◽  
Tadas Lenkutis

This paper presents modelling of various gas application to modified atomic force microscope sensor in order to change its existing dynamic characteristics. This paper represents part of continuous research, which is focused on improvement of scanning speed of atomic force microscope (AFM) sensor. Subject of our research is enhancement of dynamic characteristics of Atomic force microscope sensor. Natural frequency of AFM sensor is the main factor influencing max scanning speed of atomic force microscope. In case of working range of frequencies approaches to the resonant frequency of cantilever, scanning results becoming inaccurate and unreliable. Improvement of properties of atomic force sensor made by adding additional nonlinear aerodynamic force to the AFM sensor. This force would act as additional controllable stiffness element, which allows shift resonant frequency to higher side. In this paper is presented research of additional nonlinear force behavior using different gasses as well as compressed air. Research covers factor of humidity of compressed air. Our research performed using 3D atomic microscope cantilever model in SolidWorks flow simulation software. Results of simulation delivered as dependencies of additional stiffness in the AFM sensor in all modelled cases. Finally, results presented in graphical form and conclusions are drawn.


2013 ◽  
Vol 750 ◽  
pp. 200-203
Author(s):  
Lan Zhang ◽  
Atsushi Hosoi ◽  
Yang Ju

Using the microwave atomic force microscope (M-AFM) measuring system, the sample of Au nanowires arranged on glass wafer was sensed with three kinds of scanning speed. As the results shown, the spatial resolution of topographies is increased with the decrease of scanning speed. However, the precision of microwave images is not changed much with decreasing the scanning speed. Since M-AFM with the compact microwave instrument can always implement the real time measurement, the variation of scanning speed will not affect the microwave measurement.


Author(s):  
Kathleen M. Marr ◽  
Mary K. Lyon

Photosystem II (PSII) is different from all other reaction centers in that it splits water to evolve oxygen and hydrogen ions. This unique ability to evolve oxygen is partly due to three oxygen evolving polypeptides (OEPs) associated with the PSII complex. Freeze etching on grana derived insideout membranes revealed that the OEPs contribute to the observed tetrameric nature of the PSIl particle; when the OEPs are removed, a distinct dimer emerges. Thus, the surface of the PSII complex changes dramatically upon removal of these polypeptides. The atomic force microscope (AFM) is ideal for examining surface topography. The instrument provides a topographical view of individual PSII complexes, giving relatively high resolution three-dimensional information without image averaging techniques. In addition, the use of a fluid cell allows a biologically active sample to be maintained under fully hydrated and physiologically buffered conditions. The OEPs associated with PSII may be sequentially removed, thereby changing the surface of the complex by one polypeptide at a time.


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Author(s):  
Jean-Paul Revel

The last few years have been marked by a series of remarkable developments in microscopy. Perhaps the most amazing of these is the growth of microscopies which use devices where the place of the lens has been taken by probes, which record information about the sample and display it in a spatial from the point of view of the context. From the point of view of the biologist one of the most promising of these microscopies without lenses is the scanned force microscope, aka atomic force microscope.This instrument was invented by Binnig, Quate and Gerber and is a close relative of the scanning tunneling microscope. Today's AFMs consist of a cantilever which bears a sharp point at its end. Often this is a silicon nitride pyramid, but there are many variations, the object of which is to make the tip sharper. A laser beam is directed at the back of the cantilever and is reflected into a split, or quadrant photodiode.


2014 ◽  
Vol 5 (1) ◽  
pp. 27-30
Author(s):  
Małgorzata Tokarska-Rodak ◽  
Maria Kozioł-Montewka ◽  
Jolanta Paluch-Oleś ◽  
Dorota Plewik ◽  
Grażyna Olchowik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document