Pressure Change in an Arterial Constriction

2015 ◽  
Vol 53 (9) ◽  
pp. 561-562
Author(s):  
Carl E. Mungan
2000 ◽  
Vol 39 (02) ◽  
pp. 200-203
Author(s):  
H. Mizuta ◽  
K. Yana

Abstract:This paper proposes a method for decomposing heart rate fluctuations into background, respiratory and blood pressure oriented fluctuations. A signal cancellation scheme using the adaptive RLS algorithm has been introduced for canceling respiration and blood pressure oriented changes in the heart rate fluctuations. The computer simulation confirmed the validity of the proposed method. Then, heart rate fluctuations, instantaneous lung volume and blood pressure changes are simultaneously recorded from eight normal subjects aged 20-24 years. It was shown that after signal decomposition, the power spectrum of the heart rate showed a consistent monotonic 1/fa type pattern. The proposed method enables a clear interpretation of heart rate spectrum removing uncertain large individual variations due to the respiration and blood pressure change.


2020 ◽  
Vol 26 (3) ◽  
pp. 126-130
Author(s):  
Krasimir Kalev

AbstractA schematic diagram of a hydraulic drive system is provided to stabilize the speed of the working body by compensating for volumetric losses in the hydraulic motor. The diagram shows the inclusion of an originally developed self-adjusting choke whose flow rate in the inlet pressure change range tends to reverse - with increasing pressure the flow through it decreases. Dependent on the hydraulic characteristics of the hydraulic motor and the specific operating conditions.


2019 ◽  
pp. 81-85
Author(s):  
Se Hyun Oh ◽  
◽  
Hui Dong Kang ◽  
Sang Ku Jung ◽  
Sangchun Choi ◽  
...  

Decompression sickness is a disease caused by abrupt pressure change and presents various symptoms. To date, acute kidney injury associated with decompression sickness has been reported frequently, but there is no report of hepatic infarction associated with decompression sickness. We report a case of acute kidney injury and acute hepatic infarction treated with hyperbaric oxygen (HBO2) therapy and dialysis in a patient with severe decompression sickness after work diving.


2021 ◽  
Vol 13 (13) ◽  
pp. 7047
Author(s):  
Nu Yu ◽  
Yao Zhang ◽  
Mengya Zhang ◽  
Haifeng Li

Cabin air quality and thermal conditions have a direct impact on passenger and flight crew’s health and comfort. In this study, in-cabin thermal environment and particulate matter (PM) exposures were investigated in four China domestic flights. The mean and standard deviation of the in-cabin carbon dioxide (CO2) concentrations in two tested flights are 1440 ± 111 ppm. The measured maximum in-cabin carbon monoxide (CO) concentration is 1.2 ppm, which is under the US Occupational Safety and Health Administration (OSHA) permissible exposure limit of 10 ppm. The tested relative humidity ranges from 13.8% to 67.0% with an average of 31.7%. The cabin pressure change rates at the end of the climbing stages and the beginning of the descending stages are close to 10 hPa·min−1, which might induce the uncomfortable feeling of passengers and crew members. PM mass concentrations were measured on four flights. The results show that PM concentrations decreased after the aircraft cabin door closed and were affected by severe turbulences. The highest in-cabin PM concentrations were observed in the oldest aircraft with an age of 13.2 years, and the waiting phase in this aircraft generated the highest exposures.


Author(s):  
Pranav Madhav Kuber ◽  
Ehsan Rashedi

A new forklift backrest has been developed by incorporating adjustability concepts into the design to facilitate comfort to a wide range of users. We have conducted a comparative study between the new and original backrests to assess the effectiveness of design features. Using the phenomenon of restlessness, discomfort of the user was associated with the amount of body movement, where we have used a motion- capture system and a force platform to quantify the individuals’ movement for a wide range of body sizes. Meanwhile, subjective comfort and design feedback were collected using a questionnaire. Our results showed a reduction in the mean torso movement and the maximum center of pressure change of location by 300 and 6 mm, respectively, for the new design. Taking advantage of adjustability feature, the new backrest design exhibited enhanced comfort for longer durations and reduced magnitude of discomfort for a wide range of participants’ body sizes.


1989 ◽  
Vol 16 (4) ◽  
pp. 215-220 ◽  
Author(s):  
François Jardin ◽  
Dominique Brun-Ney ◽  
Pierre Cazaux ◽  
Olivier Dubourg ◽  
Anne Hardy ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 938
Author(s):  
Hanwei Bao ◽  
Zaiyu Wang ◽  
Zihao Liu ◽  
Gangyan Li

In contrast to the traditional pneumatic braking system, the electronic-controlled pneumatic braking system of commercial vehicles is a new system and can remedy the defects of the conventional braking system, such as long response time and low control accuracy. Additionally, it can adapt to the needs and development of autonomous driving. As the key pressure regulating component in electronic-controlled pneumatic braking system of commercial vehicles, automatic pressure regulating valves can quickly and accurately control the braking pressure in real time through an electronic control method. By aiming at improving driving comfort on the premise of ensuring braking security, this paper took the automatic pressure regulating valve as the research object and studied the pressure change rate during the braking process. First, the characteristics of the automatic pressure regulating valve and the concept of the pressure change rate were elaborated. Then, with the volume change of automatic pressure regulating valve in consideration, the mathematical model based on gas dynamics and the association model between pressure change rate and vehicle dynamic model was established in MATLAB/Simulink and analyzed. Next, through the experimental test of a sample product, the mathematical models have been verified. Finally, the key structure parameters affecting the pressure change rate of the automatic pressure regulating valve and the influence law have been identified; therefore, appropriate design advice and theoretical support have been provided to improve driving comfort.


Sign in / Sign up

Export Citation Format

Share Document