Effect of Strike Pattern and Orthotic Intervention on Tibial Shock during Running

2003 ◽  
Vol 19 (2) ◽  
pp. 153-168 ◽  
Author(s):  
Carrie A. Laughton ◽  
Irene McClay Davis ◽  
Joseph Hamill

The main purpose of this study was to investigate the effects of both strike pattern (forefoot vs. rearfoot strike pattern) and orthotic intervention on shock to the lower extremity. Semi-rigid orthotic devices were manufactured for 15 injury-free recreational runners. Tibial accelerometry, ground reaction force, and 3D kinematic data were collected on their right leg in four conditions: forefoot strike (FFS) and rearfoot strike (RFS) with and without orthotics. Two-way repeated-measures analysis of variance tests were used to assess the effects of strike pattern and orthotic intervention on tibial acceleration; angular excursions of the ankle and knee; ground reaction force (GRF) vertical and anteroposterior peaks and load rates; and ankle, knee, and leg stiffness. There was a significant increase in tibial acceleration for the FFS pattern compared to the RFS pattern. This may be explained in part by the significantly greater peak vertical GRF, peak anteroposterior GRF, anteroposterior GRF load rates, knee stiffness, and leg stiffness found in the FFS pattern compared to the RFS pattern. Tibial acceleration and rearfoot eversion excursions were similar between the orthotic and no-orthotic conditions. Knee flexion excursion and average GRF vertical load rates were significantly decreased while dorsiflexion excursion and knee stiffness were significantly increased in the orthotic condition. No significant interactions were found between strike pattern and orthotic condition for any variables assessed.

2020 ◽  
Vol 15 (10) ◽  
pp. 1485-1489
Author(s):  
Samuel J. Callaghan ◽  
Robert G. Lockie ◽  
Walter Yu ◽  
Warren A. Andrews ◽  
Robert F. Chipchase ◽  
...  

Purpose: To investigate whether changes in delivery length (ie, short, good, and full) lead to alterations in whole-body biomechanical loading as determined by ground reaction force during front-foot contact of the delivery stride for pace bowlers. Current load-monitoring practices of pace bowling in cricket assume equivocal biomechanical loading as only the total number of deliveries are monitored irrespective of delivery length. Methods: A total of 16 male pace bowlers completed a 2-over spell at maximum intensity while targeting different delivery lengths (short, 7–10 m; good, 4–7 m; and full, 0–4 m from the batter’s stumps). In-ground force plates were used to determine discrete (vertical and braking force, impulse, and loading rates) and continuous front-foot contact ground reaction force. Repeated-measures analysis of variance (P < .05), effects size, and statistical parametrical mapping were used to determine differences between delivery lengths. Results: There were no significant differences between short, good, and full delivery lengths for the discrete and continuous kinetic variables investigated (P = .19–1.00), with trivial to small effect sizes. Conclusion: There were minimal differences in front-foot contact biomechanics for deliveries of different lengths (ie, short, good, and full). These data reinforce current pace bowling load-monitoring practices (ie, counting the number of deliveries), as changes in delivery length do not affect the whole-body biomechanical loading experienced by pace bowlers. This is of practical importance as it retains simplicity in load-monitoring practice that is used widely across different competition levels and ages.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0020 ◽  
Author(s):  
Irene Davis ◽  
Todd Hayano ◽  
Adam Tenforde

Category: Other Introduction/Purpose: While the etiology of injuries is multifactorial, impact loading, as measured by the loadrate of the vertical ground reaction force has been implicated. These loadrates are typically measured with a force plate. However, this limits the measure of impacts to laboratory environments. Tibial acceleration, another measure of running impacts, is considered a surrogate for loadrate. It can be measured using new wearable technology that can be used in a runner’s natural environment. However, the correlation between tibial acceleration measured from mobile devices and vertical ground reaction force loadrates, measured from forceplates, is unknown. The purpose of this study was to determine the correlation between vertical and resultant loadrates to vertical and resultant tibial acceleration across different footstrike patterns (FSP) in runners. Methods: The study involved a sample of convenience made up of 169 runners (74 F, 95 M; age: 38.66±13.08 yrs) presenting at a running injury clinic. This included 25 habitual forefoot strike (FFS), 17 midfoot strike (MFS) and 127 rearfoot strike (RFS) runners. Participants ran on an instrumented treadmill (average speed 2.52±0.25 m/s), with a tri-axial accelerometer attached at the left distal medial tibia. Only subjects running with pain <3/10 on a VAS scale during the treadmill run were included to reduce the confounding effect of pain. Vertical average, vertical instantaneous and resultant instantaneous loadrates (VALR, VILR and RILR) and peak vertical and resultant tibial accelerations (VTA, RTA) were averaged for 8 consecutive left steps. Correlation coefficients (r) were calculated between tibial accelerations and loadrates. Results: All tibial accelerations were significantly correlated across all loadrates, with the exception of RTA with VILR for FFS (Table 1) which was nearly significant (p=0.068). Correlations ranged from 0.37-0.82. VTA was strongly correlated with all loadrates (r = 0.66). RTA was also strongly correlated with both loadrates for RFS and MFS, but only moderately correlated with loadrates for FFS (r = 0.47). Correlations were similar across the different loadrates (VALR, VILR, RILR). Conclusion: The stronger correlation between vertical tibial acceleration and all loadrates (VALR, VILR, RILR) suggests that it may be the best surrogate for loadrates when studying impact loading in runners.


2013 ◽  
Vol 29 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Hiroaki Hobara ◽  
Koh Inoue ◽  
Kazuyuki Kanosue

Understanding the degree of leg stiffness during human movement would provide important information that may be used for injury prevention. In the current study, we investigated bilateral differences in leg stiffness during one-legged hopping. Ten male participants performed one-legged hopping in place, matching metronome beats at 1.5, 2.2, and 3.0 Hz. Based on a spring-mass model, we calculated leg stiffness, which is defined as the ratio of maximal ground reaction force to maximum center of mass displacement at the middle of the stance phase, measured from vertical ground reaction force. In all hopping frequency settings, there was no significant difference in leg stiffness between legs. Although not statistically significant, asymmetry was the greatest at 1.5 Hz, followed by 2.2 and 3.0 Hz for all dependent variables. Furthermore, the number of subjects with an asymmetry greater than the 10% criterion was larger at 1.5 Hz than those at 2.2 and 3.0 Hz. These results will assist in the formulation of treatment-specific training regimes and rehabilitation programs for lower extremity injuries.


2014 ◽  
Vol 30 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Hiroaki Hobara ◽  
Koh Inoue ◽  
Yoshiyuki Kobayashi ◽  
Toru Ogata

Despite the presence of several different calculations of leg stiffness during hopping, little is known about how the methodologies produce differences in the leg stiffness. The purpose of this study was to directly compareKlegduring hopping as calculated from three previously published computation methods. Ten male subjects hopped in place on two legs, at four frequencies (2.2, 2.6, 3.0, and 3.4 Hz). In this article, leg stiffness was calculated from the natural frequency of oscillation (method A), the ratio of maximal ground reaction force (GRF) to peak center of mass displacement at the middle of the stance phase (method B), and an approximation based on sine-wave GRF modeling (method C). We found that leg stiffness in all methods increased with an increase in hopping frequency, butKlegvalues using methods A and B were significantly higher than when using method C at all hopping frequencies. Therefore, care should be taken when comparing leg stiffness obtained by method C with those calculated by other methods.


2017 ◽  
Vol 38 (10) ◽  
pp. 776-780 ◽  
Author(s):  
Anna Laws ◽  
Sean Williams ◽  
Cassie Wilson

AbstractBiomechanical imbalances and inefficient functional movements are considered contributing factors to running-related injuries. Clinical Pilates uses a series of exercises focused on retraining normal movement patterns. This study investigated whether a 6-week course of Clinical Pilates improves functional movement and thereby, potentially, reduces the risk of running-related injuries associated with movement dysfunction. A modified functional movement screen was used to analyze the functional movement ability of forty runners. Forty participants completed a 6-week course of Clinical Pilates delivered by a Clinical Pilates instructor. The movement screen was carried out 3 times for each runner: 6 weeks pre-intervention (baseline), within one week pre-intervention (pre) and within one week post-intervention (post). Repeated-measures analysis of variance and post-hoc tests found significant increases in scores between baseline and post (mean±SD; 13.4±2.4 vs. 17.0±1.7, p<0.01) and pre and post (mean±SD; 13.5±2.5 vs. 17.0±1.7, p<0.01), but no significant difference between baseline and pre (p=0.3). A 6-week course of Clinical Pilates significantly improves functional movement in recreational runners, and this may lead to a reduction in the risk of running-related injuries.


2016 ◽  
Vol 41 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Erin Boutwell ◽  
Rebecca Stine ◽  
Steven Gard

Background:Reduced-stiffness components are often prescribed in lower-limb prostheses, but their efficacy in augmenting shock absorption has been inconclusive.Objectives:To perform a systematic variation of longitudinal prosthetic stiffness over a wide range of values and to evaluate its effect on shock absorption during gait.Study design:Repeated-measures crossover experiment.Methods:Twelve subjects with a unilateral transtibial amputation walked at normal and fast self-selected speeds. Longitudinal prosthetic stiffness was modified by springs within a shock-absorbing pylon: normal (manufacturer recommended), 75% of normal (medium), 50% of normal (soft), and rigid (displacement blocked). The variables of interest were kinematic (stance-phase knee flexion and pelvic obliquity) and kinetic (prosthetic-side ground reaction force loading peak magnitude and timing).Results:No changes were observed in kinematic measures during gait. A significant difference in peak ground reaction force magnitudes between medium and normal ( p = 0.001) during freely selected walking was attributed to modified walking speed ( p = 0.008). Ground reaction force peaks were found to be statistically different during fast walking, but only between isolated stiffness conditions. Thus, altering longitudinal prosthesis stiffness produced no appreciable change in gait biomechanics.Conclusion:Prosthesis stiffness does not appear to substantially influence shock absorption in transtibial prosthesis users.Clinical relevanceVarying the level of longitudinal prosthesis stiffness did not meaningfully influence gait biomechanics at self-selected walking speeds. Thus, as currently prescribed within a transtibial prosthesis, adding longitudinal stiffness in isolation may not provide the anticipated shock absorption benefits. Further research into residual limb properties and compensatory mechanisms is needed.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yi Wang ◽  
Wing-Kai Lam ◽  
Lok-Yee Pak ◽  
Charis K.-W. Wong ◽  
Mohammad F. Tan ◽  
...  

While colour of red can play a significant role in altering human perception and performances, little is known about its perceptual-motor effect on running mechanics. This study examined the effects of variations in insole colours on impact forces, ankle kinematics, and trial-to-trial reliability at various running speeds. Sixteen male recreational runners ran on instrumented treadmill at slow (90%), preferred (100%), and fast (110%) running speeds when wearing insoles in red, blue, and white colours. We used synchronized force platform and motion capturing system to measure ground reaction force, ankle sagittal and frontal kinematics, and movement variability. A two-way (colour x speed) ANOVA with repeated measures was performed with Bonferroni adjusted post hoc comparisons, with alpha set at 0.05. Data analyses indicated that participants demonstrated higher impact and maximum loading rate of ground reaction force, longer stride length, shorter contact time, and smaller touchdown ankle inversion as well as larger ankle sagittal range of motion (RoM), but smaller frontal RoM in fast speed as compared with preferred P < 0.05 and slow speeds P < 0.001 . Although insole colour had minimal effect on mean values of any tested variables P > 0.05 , participants wearing red-coloured orthoses showed higher coefficient of variation values for maximum loading rate than wearing blue insoles P = 0.009 . These results suggest that running at faster speed would lead to higher impact loading and altered lower-limb mechanics and that colour used on the tops of insoles influences the wearers’ movement repeatability, with implications for use of foot insole in running.


1995 ◽  
Vol 28 (1) ◽  
pp. 113-117 ◽  
Author(s):  
Mario A. Lafortune ◽  
Mark J. Lake ◽  
Ewald Hennig

2017 ◽  
Vol 33 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Gaspare Pavei ◽  
Elena Seminati ◽  
Jorge L.L. Storniolo ◽  
Leonardo A. Peyré-Tartaruga

We compared running mechanics parameters determined from ground reaction force (GRF) measurements with estimated forces obtained from double differentiation of kinematic (K) data from motion analysis in a broad spectrum of running speeds (1.94–5.56 m⋅s–1). Data were collected through a force-instrumented treadmill and compared at different sampling frequencies (900 and 300 Hz for GRF, 300 and 100 Hz for K). Vertical force peak, shape, and impulse were similar between K methods and GRF. Contact time, flight time, and vertical stiffness (kvert) obtained from K showed the same trend as GRF with differences < 5%, whereas leg stiffness (kleg) was not correctly computed by kinematics. The results revealed that the main vertical GRF parameters can be computed by the double differentiation of the body center of mass properly calculated by motion analysis. The present model provides an alternative accessible method for determining temporal and kinetic parameters of running without an instrumented treadmill.


Author(s):  
Jocelyn E. Arnett ◽  
Cameron D. Addie ◽  
Ludmila M. Cosio-Lima ◽  
Lee E. Brown

Background: Landing is a common movement that occurs in many sports. Barefoot research has gained popularity in examining how shoes alter natural movements. However, it is unknown how a single leg landing under barefoot conditions, as well as landing height, affects ground reaction forces (GRF). Objective: The purpose of this research was to examine the differences in GRF during a single leg landing under barefoot and shod conditions from various heights. Methods: Sixteen female Division II collegiate athletes, 8 basketball (age: 19.88 ± 0.64 yrs; height: 1.77 ± 0.09 m; mass: 75.76 ± 12.97 kg) and 8 volleyball (age: 20.00 ± 1.07 yrs; height: 1.74 ± 0.08 m; mass: 72.41 ± 5.41 kg), performed single leg landings from 12, 18, 24, and 30 inches barefoot and shod. An AMTI AccuGait force plate was used to record GRF. A 2 (condition) x 4 (box height) x 2 (sport) repeated measures ANOVA was performed to determine any GRF differences. Results: There were no significant three way or two-way interactions (p > 0.05). There was also no main effect for sport (p > 0.05). There were main effects for footwear and box height (p = 0.000) where shod (2295.121 ± 66.025 N) had greater impact than barefoot (2090.233 ± 62.684 N). Conclusions: Single leg barefoot landings resulted in less vertical GRF than shod landings. This could be due to increased flexion at the joints which aids in force absorption.


Sign in / Sign up

Export Citation Format

Share Document