Limitations of Functionally Determined Joint Centers for the Analysis of Athletic Human Movement: A Case Study of the Upper Limb

2009 ◽  
Vol 25 (4) ◽  
pp. 281-292 ◽  
Author(s):  
Andy Roosen ◽  
Matthew T.G. Pain ◽  
Mickaël Begon

Much research is ongoing into improving the accuracy of functional algorithms to determine joint centers (JC), but there has been limited testing using human movement data. This paper is in three parts: Part 1, errors in determining JCs from real human movement data using the SCoRE method; Part 2, variability of marker combinations during a punch; Part 3, variability in the JC due to reconstruction. Results indicate determining the JC of the shoulder or elbow with a triad of markers per segment with an accuracy greater than 20 mm is unlikely. Part 2 suggests conducting a pilot study with abundant markers to obtain triads, which are most stable due to differences of 300–400% in variability between triads. Variability due to the choice of reference frame for reconstruction during the punch ranged from 2.5 to 13.8 mm for the shoulder and 1.5 to 21.1 mm for the elbow. It would appear more pertinent to enhance the practical methods in situ than to further improve theoretical accuracy of functional methods.

2018 ◽  
pp. 60-67
Author(s):  
Henrika Pihlajaniemi ◽  
Anna Luusua ◽  
Eveliina Juntunen

This paper presents the evaluation of usersХ experiences in three intelligent lighting pilots in Finland. Two of the case studies are related to the use of intelligent lighting in different kinds of traffic areas, having emphasis on aspects of visibility, traffic and movement safety, and sense of security. The last case study presents a more complex view to the experience of intelligent lighting in smart city contexts. The evaluation methods, tailored to each pilot context, include questionnaires, an urban dashboard, in-situ interviews and observations, evaluation probes, and system data analyses. The applicability of the selected and tested methods is discussed reflecting the process and achieved results.


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 965
Author(s):  
Xingyue Zhu ◽  
Kaixiong Yu ◽  
Xiaofan Zhu ◽  
Juan Su ◽  
Chi Wu

Nowadays, it is still a challenge for commercial nitrate sensors to meet the requirement of high accuracy in a complex water. Based on deep-ultraviolet spectral analysis and a regression algorithm, a different measuring method for obtaining the concentration of nitrate in seawater is proposed in this paper. The system consists of a deuterium lamp, an optical fiber splitter module, a reflection probe, temperature and salinity sensors, and a deep-ultraviolet spectrometer. The regression model based on weighted average kernel partial least squares (WA-KPLS) algorithm together with corrections for temperature and salinity (TSC) is established. After that, the seawater samples from Western Pacific and Aoshan Bay in Qingdao, China with the addition of various nitrate concentrations are studied to verify the reliability and accuracy of the method. The results show that the TSC-WA-KPLS algorithm shows the best results when compared against the multiple linear regression (MLR) and ISUS (in situ ultraviolet spectrophotometer) algorithms in the temperatures range of 4–25 °C, with RMSEP of 0.67 µmol/L for Aoshan Bay seawater and 1.08 µmol/L for Western Pacific seawater. The method proposed in this paper is suitable for measuring the nitrate concentration in seawater with higher accuracy, which could find application in the development of in-situ and real-time nitrate sensors.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng-Chun Chang ◽  
Rebecca Kahn ◽  
Yu-An Li ◽  
Cheng-Sheng Lee ◽  
Caroline O. Buckee ◽  
...  

Abstract Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 913.2-914
Author(s):  
T. Birinci ◽  
E. Kaya Mutlu ◽  
S. Altun

Background:Elbow fracture is treated either conservatively or surgically followed by a period of immobilization with casting or splinting. A splint used to immobilize upper limbs for many weeks results in changes in both the peripheral musculature and the central nervous system. It is well known that common complaints after upper limb fractures include weakness, pain, and stiffness; therefore, pain management is important in the early stages of the rehabilitation of upper limb fractures.Objectives:This pilot study aimed to investigate the efficacy of graded motor imaginary (GMI) on pain, range of motion (ROM), and function in patients with posttraumatic stiff elbow.Methods:Fourteen patients with posttraumatic stiff elbow (6 women, mean age: 45.42 ± 11.26 years, mean body mass index: 24.29 ± 3.38 kg\m2and mean duration of immobilization: 4.75 ± 1.03 weeks) were randomly allocated to either GMI or control groups. The GMI group received GMI treatment in addition to a structured exercise program, and the control group received a structured exercise program (two days per week for six weeks) (Figure 1). The assessments included pain at rest and during activity using the visual analog scale (VAS), elbow active ROM with a digital goniometer (Baseline Evaluation Instrument, Fabrication Enterprises, Inc., White Plains, NY), and upper extremity functional status using the Disability of the Arm, Shoulder and Hand Questionnaire (DASH). The assessments were performed at baseline and after the 6-week intervention.Figure 1.Graded motor imagery performed with mirror boxResults:After the 6-week intervention, there was a significant increase in elbow flexion-extension ROM and supination-pronation ROM, and improvement in DASH score in both groups (p<0.05). However, improvement in VAS-rest and VAS-activity was significantly higher in the GMI group than the control group (p=0.03 and p=0.01, respectively).Conclusion:A conservative treatment program consisting of GMI treatment in addition to a structured exercise program applied twice a week for 6 weeks, has been found more effective in decreasing pain in the posttraumatic stiff elbow. It could be concluded that GMI is an effective treatment method for elbow fracture in patients with predominant elbow pain.References:[1] Harris JE, Hebert A. Utilization of motor imagery in upper limb rehabilitation: a systematic scoping review. Clin Rehab. 2015:29(11):1092-1107.[2] Opie GM, Evans A, Ridding MC, Semmler JG. Short-term immobilization influences use-dependent cortical plasticity and fine motor performance. Neuroscience. 2016:330:247-256.[3] Birinci T, Razak Ozdincler A, Altun S, Kural C. A structured exercise programme combined with proprioceptive neuromuscular facilitation stretching or static stretching in posttraumatic stiffness of the elbow: a randomized controlled trial. Clin Rehab. 2019:33(2):241-252.Acknowledgments:The present work was supported by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa (Project No: TDK-2019-33997).Disclosure of Interests:None declared


2021 ◽  
Vol 13 (3) ◽  
pp. 1505
Author(s):  
Ignacio Menéndez Pidal ◽  
Jose Antonio Mancebo Piqueras ◽  
Eugenio Sanz Pérez ◽  
Clemente Sáenz Sanz

Many of the large number of underground works constructed or under construction in recent years are in unfavorable terrains facing unusual situations and construction conditions. This is the case of the subject under study in this paper: a tunnel excavated in evaporitic rocks that experienced significant karstification problems very quickly over time. As a result of this situation, the causes that may underlie this rapid karstification are investigated and a novel methodology is presented in civil engineering where the use of saturation indices for the different mineral specimens present has been crucial. The drainage of the rock massif of El Regajal (Madrid-Toledo, Spain, in the Madrid-Valencia high-speed train line) was studied and permitted the in-situ study of the hydrogeochemical evolution of water flow in the Miocene evaporitic materials of the Tajo Basin as a full-scale testing laboratory, that are conforms as a whole, a single aquifer. The work provides a novel methodology based on the calculation of activities through the hydrogeochemical study of water samples in different piezometers, estimating the saturation index of different saline materials and the dissolution capacity of the brine, which is surprisingly very high despite the high electrical conductivity. The circulating brine appears unsaturated with respect to thenardite, mirabilite, epsomite, glauberite, and halite. The alteration of the underground flow and the consequent renewal of the water of the aquifer by the infiltration water of rain and irrigation is the cause of the hydrogeochemical imbalance and the modification of the characteristics of the massif. These modifications include very important loss of material by dissolution, altering the resistance of the terrain and the increase of the porosity. Simultaneously, different expansive and recrystallization processes that decrease the porosity of the massif were identified in the present work. The hydrogeochemical study allows the evolution of these phenomena to be followed over time, and this, in turn, may facilitate the implementation of preventive works in civil engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karen McCulloch ◽  
Nick Golding ◽  
Jodie McVernon ◽  
Sarah Goodwin ◽  
Martin Tomko

AbstractUnderstanding human movement patterns at local, national and international scales is critical in a range of fields, including transportation, logistics and epidemiology. Data on human movement is increasingly available, and when combined with statistical models, enables predictions of movement patterns across broad regions. Movement characteristics, however, strongly depend on the scale and type of movement captured for a given study. The models that have so far been proposed for human movement are best suited to specific spatial scales and types of movement. Selecting both the scale of data collection, and the appropriate model for the data remains a key challenge in predicting human movements. We used two different data sources on human movement in Australia, at different spatial scales, to train a range of statistical movement models and evaluate their ability to predict movement patterns for each data type and scale. Whilst the five commonly-used movement models we evaluated varied markedly between datasets in their predictive ability, we show that an ensemble modelling approach that combines the predictions of these models consistently outperformed all individual models against hold-out data.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 276
Author(s):  
Nisar Ali Khan ◽  
Giorgio Monti ◽  
Camillo Nuti ◽  
Marco Vailati

Infilled reinforced concrete (IRC) frames are a very common construction typology, not only in developing countries such as Pakistan but also in southern Europe and Western countries, due to their ease of construction and less technical skills required for the construction. Their performance during past earthquakes has been in some cases satisfactory and in other cases inadequate. Significant effort has been made among researchers to improve such performance, but few have highlighted the influence of construction materials used in the infill walls. In some building codes, infills are still considered as non-structural elements, both in the design of new buildings and, sometimes, in the assessment of existing buildings. This is mainly due to some difficulties in modeling their mechanical behavior and also the large variety of typologies, which are difficult to categorize. Some building codes, for example, Eurocode, already address the influence of infill walls in design, but there is still a lack of homogeneity among different codes. For example, the Pakistan building code (PBC) does not address infills, despite being a common construction technique in the country. Past earthquake survey records show that construction materials and infill types significantly affect the seismic response of buildings, thus highlighting the importance of investigating such parameters. This is the object of this work, where a numerical model for infill walls is introduced, which aims at predicting their failure mode, as a function of some essential parameters, such as the friction coefficient between mortar and brick surface and mortar strength, usually disregarded in previous models. A comprehensive case study is presented of a three-story IRC frame located in the city of Mirpur, Pakistan, hit by an earthquake of magnitude 5.9 on 24 September 2019. The results obtained from the numerical model show good agreement with the damage patterns observed in situ, thus highlighting the importance of correctly modeling the infill walls when seismically designing or assessing Pakistani buildings that make use of this technology.


Sign in / Sign up

Export Citation Format

Share Document