scholarly journals Supramolecular architectures of molecularly thin yet robust free-standing layers

2019 ◽  
Vol 5 (2) ◽  
pp. eaav4489 ◽  
Author(s):  
Mina Moradi ◽  
Nadia L. Opara ◽  
Ludovico G. Tulli ◽  
Christian Wäckerlin ◽  
Scott J. Dalgarno ◽  
...  

Stable, single-nanometer thin, and free-standing two-dimensional layers with controlled molecular architectures are desired for several applications ranging from (opto-)electronic devices to nanoparticle and single-biomolecule characterization. It is, however, challenging to construct these stable single molecular layers via self-assembly, as the cohesion of those systems is ensured only by in-plane bonds. We herein demonstrate that relatively weak noncovalent bonds of limited directionality such as dipole-dipole (–CN⋅⋅⋅NC–) interactions act in a synergistic fashion to stabilize crystalline monomolecular layers of tetrafunctional calixarenes. The monolayers produced, demonstrated to be free-standing, display a well-defined atomic structure on the single-nanometer scale and are robust under a wide range of conditions including photon and electron radiation. This work opens up new avenues for the fabrication of robust, single-component, and free-standing layers via bottom-up self-assembly.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 133 ◽  
Author(s):  
Adrian Domiński ◽  
Tomasz Konieczny ◽  
Piotr Kurcok

Supramolecular hydrogels that are based on inclusion complexes between α-cyclodextrin and (co)polymers have gained significant attention over the last decade. They are formed via dynamic noncovalent bonds, such as host–guest interactions and hydrogen bonds, between various building blocks. In contrast to typical chemical crosslinking (covalent linkages), supramolecular crosslinking is a type of physical interaction that is characterized by great flexibility and it can be used with ease to create a variety of “smart” hydrogels. Supramolecular hydrogels based on the self-assembly of polypseudorotaxanes formed by a polymer chain “guest” and α-cyclodextrin “host” are promising materials for a wide range of applications. α-cyclodextrin-based polypseudorotaxane hydrogels are an attractive platform for engineering novel functional materials due to their excellent biocompatibility, thixotropic nature, and reversible and stimuli-responsiveness properties. The aim of this review is to provide an overview of the current progress in the chemistry and methods of designing and creating α-cyclodextrin-based supramolecular polypseudorotaxane hydrogels. In the described systems, the guests are (co)polymer chains with various architectures or polymeric nanoparticles. The potential applications of such supramolecular hydrogels are also described.



2014 ◽  
Vol 609-610 ◽  
pp. 266-270
Author(s):  
Jing Wei Sun ◽  
Mi Ouyang ◽  
Cheng Zhang

A post-drying thermal annealing method is proposed to successfully fabricate micro-/nanostructures with 9,10-diphenylanthracene (DPA). Through varying operating temperature, different morphologies from 0-D to 3-D of pure DPA self-assembly were achieved and studied by SEM, XRD and PL spectra. The morphology transformation mechanism was also investigated. These results indicate that varying annealing temperature is an effective way to control the supramolecular architectures of DPA. In addition, such in situ fabrication on a substrate will provide possibility for manufacture of electronic devices which normally require surface deposition of nanomaterials.



2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.



Author(s):  
C. Monachon ◽  
M.S. Zielinski ◽  
D. Gachet ◽  
S. Sonderegger ◽  
S. Muckenhirn ◽  
...  

Abstract Quantitative cathodoluminescence (CL) microscopy is a new optical spectroscopy technique that measures electron beam-induced optical emission over large field of view with a spatial resolution close to that of a scanning electron microscope (SEM). Correlation of surface morphology (SE contrast) with spectrally resolved and highly material composition sensitive CL emission opens a new pathway in non-destructive failure and defect analysis at the nanometer scale. Here we present application of a modern CL microscope in defect and homogeneity metrology, as well as failure analysis in semiconducting electronic materials



Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1651
Author(s):  
Cristina Arqueros ◽  
Félix Zamora ◽  
Carmen Montoro

Global population growth and water resource scarcity are significant social problems currently being studied by many researchers focusing on finding new materials for water treatment. The aim is to obtain quality water suitable for drinking and industrial consumption. In this sense, an emergent class of crystalline porous materials known as Covalent-Organic Frameworks (COFs) offers a wide range of possibilities since their structures can be designed on demand for specific applications. Indeed, in the last decade, many efforts have been made for their use in water treatment. This perspective article aims to overview the state-of-the-art COFs collecting the most recent results in the field for water detection of pollutants and water treatment. After the introduction, where we overview the classical design strategies on COF design and synthesis for obtaining chemically stable COFs, we summarize the different experimental methodologies used for COFs processing in the form of supported and free-standing membranes and colloids. Finally, we describe the use of COFs in processes involving the detection of pollutants in water and wastewater treatment, such as the capture of organic compounds, heavy metals, and dyes, the degradation of organic pollutants, as well as in desalination processes. Finally, we provide a perspective on the field and the potential technological use of these novel materials.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaojian Chen ◽  
Manjesh Kumar Singh ◽  
Katrin Wunderlich ◽  
Sean Harvey ◽  
Colette J. Whitfield ◽  
...  

AbstractThe creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies.



2009 ◽  
Vol 131 (42) ◽  
pp. 15122-15123 ◽  
Author(s):  
Sampath Srinivasan ◽  
Palathingal A. Babu ◽  
Sankarapillai Mahesh ◽  
Ayyappanpillai Ajayaghosh


1992 ◽  
Vol 277 ◽  
Author(s):  
Geoffrey A. Ozin ◽  
Carol L. Bowes ◽  
Mark R. Steele

ABSTRACTVarious MOCVD (metal-organic chemical vapour deposition) type precursors and their self-assembled semiconductor nanocluster products [1] have been investigated in zeolite Y hosts. From analysis of in situ observations (FTIR, UV-vis reflectance, Mössbauer, MAS-NMR) of the reaction sequences and structural features of the precursors and products (EXAFS and Rietveld refinement of powder XRD data) the zeolite is viewed as providing a macrospheroidal, multidendate coordination environment towards encapsulated guests. By thinking about the α- and β-cages of the zeolite Y host effectively as a zeolate ligand composed of interconnected aluminosilicate “crown ether-like” building blocks, the materials chemist is able to better understand and exploit the reactivity and coordination properties of the zeolite internal surface for the anchoring and self-assembly of a wide range of encapsulated guests. This approach helps with the design of synthetic strategies for creating novel guest-host inclusion compounds having possible applications in areas of materials science such as nonlinear optics, quantum electronics, and size/shape selective catalysis.



2015 ◽  
Vol 127 (15) ◽  
pp. 4654-4659 ◽  
Author(s):  
Junghee Lee ◽  
Ghibom Bhak ◽  
Ji-Hye Lee ◽  
Woohyun Park ◽  
Minwoo Lee ◽  
...  


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
David M. Smith ◽  
Verena Schüller ◽  
Carsten Forthmann ◽  
Robert Schreiber ◽  
Philip Tinnefeld ◽  
...  

Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.



Sign in / Sign up

Export Citation Format

Share Document