scholarly journals A single-cell analysis of the molecular lineage of chordate embryogenesis

2020 ◽  
Vol 6 (45) ◽  
pp. eabc4773
Author(s):  
Tengjiao Zhang ◽  
Yichi Xu ◽  
Kaoru Imai ◽  
Teng Fei ◽  
Guilin Wang ◽  
...  

Progressive unfolding of gene expression cascades underlies diverse embryonic lineage development. Here, we report a single-cell RNA sequencing analysis of the complete and invariant embryonic cell lineage of the tunicate Ciona savignyi from fertilization to the onset of gastrulation. We reconstructed a developmental landscape of 47 cell types over eight cell cycles in the wild-type embryo and identified eight fate transformations upon fibroblast growth factor (FGF) inhibition. For most FGF-dependent asymmetric cell divisions, the bipotent mother cell displays the gene signature of the default daughter fate. In convergent differentiation of the two notochord lineages, we identified additional gene pathways parallel to the master regulator T/Brachyury. Last, we showed that the defined Ciona cell types can be matched to E6.5-E8.5 stage mouse cell types and display conserved expression of limited number of transcription factors. This study provides a high-resolution single-cell dataset to understand chordate early embryogenesis and cell lineage differentiation.

2020 ◽  
Author(s):  
Konner M. Winkley ◽  
Wendy M. Reeves ◽  
Michael T. Veeman

AbstractInductive signaling interactions between different cell types are a major mechanism for the further diversification of embryonic cell fates. Most blastomeres in the model chordate Ciona robusta become restricted to a single predominant fate between the 64-cell and mid-gastrula stages. We used single-cell RNAseq spanning this period to identify 53 distinct cell states, 25 of which are dependent on a MAPK-mediated signal critical to early Ciona patterning. Divergent gene expression between newly bifurcated sibling cell types is dominated by upregulation in the induced cell type. These upregulated genes typically include numerous transcription factors and not just one or two key regulators. The Ets family transcription factor Elk1/3/4 is upregulated in almost all the putatively direct inductions, indicating that it may act in an FGF-dependent feedback loop. We examine several bifurcations in detail and find support for a ‘broad-hourglass’ model of cell fate specification in which many genes are induced in parallel to key tissue-specific transcriptional regulators via the same set of transcriptional inputs.


2019 ◽  
Vol 2 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Jinchu Vijay ◽  
Marie-Frédérique Gauthier ◽  
Rebecca L. Biswell ◽  
Daniel A. Louiselle ◽  
Jeffrey J. Johnston ◽  
...  

Author(s):  
Sergio Triana ◽  
Megan L. Stanifer ◽  
Mohammed Shahraz ◽  
Markus Mukenhirn ◽  
Carmon Kee ◽  
...  

AbstractHuman intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a pipeline combining single-cell RNA-Seq and highly-multiplex RNA imaging and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages with a preferential infection of proliferating cells. Intriguingly, each intestinal epithelial cell lineage has a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our pipeline can be applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongyu Zhao ◽  
Yu Teng ◽  
Wende Hao ◽  
Jie Li ◽  
Zhefeng Li ◽  
...  

Abstract Background Ovarian cancer was one of the leading causes of female deaths. Patients with OC were essentially incurable and portends a poor prognosis, presumably because of profound genetic heterogeneity limiting reproducible prognostic classifications. Methods We comprehensively analyzed an ovarian cancer single-cell RNA sequencing dataset, GSE118828, and identified nine major cell types. Relationship between the clusters was explored with CellPhoneDB. A malignant epithelial cluster was confirmed using pseudotime analysis, CNV and GSVA. Furthermore, we constructed the prediction model (i.e., RiskScore) consisted of 10 prognosis-specific genes from 2397 malignant epithelial genes using the LASSO Cox regression algorithm based on public datasets. Then, the prognostic value of Riskscore was assessed with Kaplan–Meier survival analysis and time-dependent ROC curves. At last, a series of in-vitro assays were conducted to explore the roles of IL4I1, an important gene in Riskscore, in OC progression. Results We found that macrophages possessed the most interaction pairs with other clusters, and M2-like TAMs were the dominant type of macrophages. C0 was identified as the malignant epithelial cluster. Patients with a lower RiskScore had a greater OS (log-rank P < 0.01). In training set, the AUC of RiskScore was 0.666, 0.743 and 0.809 in 1-year, 3-year and 5-year survival, respectively. This was also validated in another two cohorts. Moreover, downregulation of IL4I1 inhibited OC cells proliferation, migration and invasion. Conclusions Our work provide novel insights into our understanding of the heterogeneity among OCs, and would help elucidate the biology of OC and provide clinical guidance in prognosis for OC patients.


2020 ◽  
Author(s):  
N. Kakava-Georgiadou ◽  
J.F. Severens ◽  
A.M. Jørgensen ◽  
K.M. Garner ◽  
M.C.M Luijendijk ◽  
...  

AbstractHypothalamic nuclei which regulate homeostatic functions express leptin receptor (LepR), the primary target of the satiety hormone leptin. Single-cell RNA sequencing (scRNA-seq) has facilitated the discovery of a variety of hypothalamic cell types. However, low abundance of LepR transcripts prevented further characterization of LepR cells. Therefore, we perform scRNA-seq on isolated LepR cells and identify eight neuronal clusters, including three uncharacterized Trh-expressing populations as well as 17 non-neuronal populations including tanycytes, oligodendrocytes and endothelial cells. Food restriction had a major impact on Agrp neurons and changed the expression of obesity-associated genes. Multiple cell clusters were enriched for GWAS signals of obesity. We further explored changes in the gene regulatory landscape of LepR cell types. We thus reveal the molecular signature of distinct populations with diverse neurochemical profiles, which will aid efforts to illuminate the multi-functional nature of leptin’s action in the hypothalamus.


2020 ◽  
Author(s):  
Manuela Wuelling ◽  
Christoph Neu ◽  
Andrea M. Thiesen ◽  
Simo Kitanovski ◽  
Yingying Cao ◽  
...  

AbstractEpigenetic modifications play critical roles in regulating cell lineage differentiation, but the epigenetic mechanisms guiding specific differentiation steps within a cell lineage have rarely been investigated. To decipher such mechanisms, we used the defined transition from proliferating (PC) into hypertrophic chondrocytes (HC) during endochondral ossification as a model. We established a map of activating and repressive histone modifications for each cell type. ChromHMM state transition analysis and Pareto-based integration of differential levels of mRNA and epigenetic marks revealed that differentiation associated gene repression is initiated by the addition of H3K27me3 to promoters still carrying substantial levels of activating marks. Moreover, the integrative analysis identified genes specifically expressed in cells undergoing the transition into hypertrophy.Investigation of enhancer profiles detected surprising differences in enhancer number, location, and transcription factor binding sites between the two closely related cell types. Furthermore, cell type-specific upregulation of gene expression was associated with a shift from low to high H3K27ac decoration. Pathway analysis identified PC-specific enhancers associated with chondrogenic genes, while HC-specific enhancers mainly control metabolic pathways linking epigenetic signature to biological functions.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Prashant Rajbhandari ◽  
Douglas Arneson ◽  
Sydney K Hart ◽  
In Sook Ahn ◽  
Graciel Diamante ◽  
...  

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.


2020 ◽  
Vol 52 (10) ◽  
pp. 468-477
Author(s):  
Alexander C. Zambon ◽  
Tom Hsu ◽  
Seunghee Erin Kim ◽  
Miranda Klinck ◽  
Jennifer Stowe ◽  
...  

Much of our understanding of the regulatory mechanisms governing the cell cycle in mammals has relied heavily on methods that measure the aggregate state of a population of cells. While instrumental in shaping our current understanding of cell proliferation, these approaches mask the genetic signatures of rare subpopulations such as quiescent (G0) and very slowly dividing (SD) cells. Results described in this study and those of others using single-cell analysis reveal that even in clonally derived immortalized cancer cells, ∼1–5% of cells can exhibit G0 and SD phenotypes. Therefore to enable the study of these rare cell phenotypes we established an integrated molecular, computational, and imaging approach to track, isolate, and genetically perturb single cells as they proliferate. A genetically encoded cell-cycle reporter (K67p-FUCCI) was used to track single cells as they traversed the cell cycle. A set of R-scripts were written to quantify K67p-FUCCI over time. To enable the further study G0 and SD phenotypes, we retrofitted a live cell imaging system with a micromanipulator to enable single-cell targeting for functional validation studies. Single-cell analysis revealed HT1080 and MCF7 cells had a doubling time of ∼24 and ∼48 h, respectively, with high duration variability in G1 and G2 phases. Direct single-cell microinjection of mRNA encoding (GFP) achieves detectable GFP fluorescence within ∼5 h in both cell types. These findings coupled with the possibility of targeting several hundreds of single cells improves throughput and sensitivity over conventional methods to study rare cell subpopulations.


2015 ◽  
Vol 112 (21) ◽  
pp. 6545-6550 ◽  
Author(s):  
Rosemary M. Onjiko ◽  
Sally A. Moody ◽  
Peter Nemes

Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo.


Sign in / Sign up

Export Citation Format

Share Document