scholarly journals Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells

Science ◽  
2013 ◽  
Vol 343 (6166) ◽  
pp. 84-87 ◽  
Author(s):  
Ophir Shalem ◽  
Neville E. Sanjana ◽  
Ella Hartenian ◽  
Xi Shi ◽  
David A. Scott ◽  
...  

The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.

Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1765-1778
Author(s):  
Gregory J Budziszewski ◽  
Sharon Potter Lewis ◽  
Lyn Wegrich Glover ◽  
Jennifer Reineke ◽  
Gary Jones ◽  
...  

Abstract We have undertaken a large-scale genetic screen to identify genes with a seedling-lethal mutant phenotype. From screening ~38,000 insertional mutant lines, we identified >500 seedling-lethal mutants, completed cosegregation analysis of the insertion and the lethal phenotype for >200 mutants, molecularly characterized 54 mutants, and provided a detailed description for 22 of them. Most of the seedling-lethal mutants seem to affect chloroplast function because they display altered pigmentation and affect genes encoding proteins predicted to have chloroplast localization. Although a high level of functional redundancy in Arabidopsis might be expected because 65% of genes are members of gene families, we found that 41% of the essential genes found in this study are members of Arabidopsis gene families. In addition, we isolated several interesting classes of mutants and genes. We found three mutants in the recently discovered nonmevalonate isoprenoid biosynthetic pathway and mutants disrupting genes similar to Tic40 and tatC, which are likely to be involved in chloroplast protein translocation. Finally, we directly compared T-DNA and Ac/Ds transposon mutagenesis methods in Arabidopsis on a genome scale. In each population, we found only about one-third of the insertion mutations cosegregated with a mutant phenotype.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1154
Author(s):  
Min Jeong Hong ◽  
Jin-Baek Kim ◽  
Yong Weon Seo ◽  
Dae Yeon Kim

Genes of the F-box family play specific roles in protein degradation by post-translational modification in several biological processes, including flowering, the regulation of circadian rhythms, photomorphogenesis, seed development, leaf senescence, and hormone signaling. F-box genes have not been previously investigated on a genome-wide scale; however, the establishment of the wheat (Triticum aestivum L.) reference genome sequence enabled a genome-based examination of the F-box genes to be conducted in the present study. In total, 1796 F-box genes were detected in the wheat genome and classified into various subgroups based on their functional C-terminal domain. The F-box genes were distributed among 21 chromosomes and most showed high sequence homology with F-box genes located on the homoeologous chromosomes because of allohexaploidy in the wheat genome. Additionally, a synteny analysis of wheat F-box genes was conducted in rice and Brachypodium distachyon. Transcriptome analysis during various wheat developmental stages and expression analysis by quantitative real-time PCR revealed that some F-box genes were specifically expressed in the vegetative and/or seed developmental stages. A genome-based examination and classification of F-box genes provide an opportunity to elucidate the biological functions of F-box genes in wheat.


2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


2021 ◽  
Vol 14 (694) ◽  
pp. eabe0387
Author(s):  
Orna Ernst ◽  
Jing Sun ◽  
Bin Lin ◽  
Balaji Banoth ◽  
Michael G. Dorrington ◽  
...  

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes. NDPK-D was required for both mitochondrial DNA synthesis and cardiolipin exposure on the mitochondrial surface in response to inflammasome priming signals mediated by TLRs, and macrophages deficient in NDPK-D had multiple defects in LPS-induced inflammasome activation. In addition, NDPK-D was required for the recruitment of TNF receptor–associated factor 6 (TRAF6) to mitochondria, which was critical for reactive oxygen species (ROS) production and the metabolic reprogramming that supported the TLR-induced gene program. NDPK-D knockout mice were protected from LPS-induced shock, consistent with decreased ROS production and attenuated glycolytic commitment during priming. Our findings suggest that, in response to microbial challenge, NDPK-D–dependent TRAF6 mitochondrial recruitment triggers an energetic fitness checkpoint required to engage and maintain the transcriptional program necessary for inflammasome activation.


2016 ◽  
Author(s):  
Bethany Signal ◽  
Brian S Gloss ◽  
Marcel E Dinger ◽  
Timothy R Mercer

ABSTRACTBackgroundThe branchpoint element is required for the first lariat-forming reaction in splicing. However due to difficulty in experimentally mapping at a genome-wide scale, current catalogues are incomplete.ResultsWe have developed a machine-learning algorithm trained with empirical human branchpoint annotations to identify branchpoint elements from primary genome sequence alone. Using this approach, we can accurately locate branchpoints elements in 85% of introns in current gene annotations. Consistent with branchpoints as basal genetic elements, we find our annotation is unbiased towards gene type and expression levels. A major fraction of introns was found to encode multiple branchpoints raising the prospect that mutational redundancy is encoded in key genes. We also confirmed all deleterious branchpoint mutations annotated in clinical variant databases, and further identified thousands of clinical and common genetic variants with similar predicted effects.ConclusionsWe propose the broad annotation of branchpoints constitutes a valuable resource for further investigations into the genetic encoding of splicing patterns, and interpreting the impact of common- and disease-causing human genetic variation on gene splicing.


2021 ◽  
Vol 11 ◽  
Author(s):  
Matthew J. Rybin ◽  
Melina Ramic ◽  
Natalie R. Ricciardi ◽  
Philipp Kapranov ◽  
Claes Wahlestedt ◽  
...  

Genome instability is associated with myriad human diseases and is a well-known feature of both cancer and neurodegenerative disease. Until recently, the ability to assess DNA damage—the principal driver of genome instability—was limited to relatively imprecise methods or restricted to studying predefined genomic regions. Recently, new techniques for detecting DNA double strand breaks (DSBs) and single strand breaks (SSBs) with next-generation sequencing on a genome-wide scale with single nucleotide resolution have emerged. With these new tools, efforts are underway to define the “breakome” in normal aging and disease. Here, we compare the relative strengths and weaknesses of these technologies and their potential application to studying neurodegenerative diseases.


2018 ◽  
Author(s):  
Jie Zhang ◽  
Massimo Cavallaro ◽  
Daniel Hebenstreit

Transcription of many genes in metazoans is subject to polymerase pausing, which corresponds to the transient arrest of transcriptionally engaged polymerase. It occurs mainly at promoter proximal regions and is not well understood. In particular, a genome-wide measurement of pausing times at high resolution has been lacking.We present here an extension of PRO-seq, time variant PRO-seq (TV-PRO-seq), that allowed us to estimate genome-wide pausing times at single base resolution. Its application to human cells reveals that promoter proximal pausing is surprisingly short compared to other regions and displays an intricate pattern. We also find precisely conserved pausing profiles at tRNA and rRNA genes and identified DNA motifs associated with pausing time. Finally, we show how chromatin states reflect differences in pausing times.


2018 ◽  
Vol 19 (1) ◽  
pp. 223-246 ◽  
Author(s):  
Saffron A.G. Willis-Owen ◽  
William O.C. Cookson ◽  
Miriam F. Moffatt

Asthma is a common, clinically heterogeneous disease with strong evidence of heritability. Progress in defining the genetic underpinnings of asthma, however, has been slow and hampered by issues of inconsistency. Recent advances in the tools available for analysis—assaying transcription, sequence variation, and epigenetic marks on a genome-wide scale—have substantially altered this landscape. Applications of such approaches are consistent with heterogeneity at the level of causation and specify patterns of commonality with a wide range of alternative disease traits. Looking beyond the individual as the unit of study, advances in technology have also fostered comprehensive analysis of the human microbiome and its varied roles in health and disease. In this article, we consider the implications of these technological advances for our current understanding of the genetics and genomics of asthma.


Author(s):  
Marc Petitpierre ◽  
Ludwig Stenz ◽  
Ariane Paoloni-Giacobino

Introduction: The effects of acupuncture treatment in patients suffering from burnout may imply an epigenetic control mediated by DNA methylation changes. In this observational study, a genome-wide characterization of epigenetic changes in blood DNA, before and after acupuncture treatment, was performed in a cohort of 11 patients suffering from burnout. Methods: Burnout was assessed using the Maslach Burnout Inventory (MBI) and DNA was extracted from blood samples and analyzed by Illumina EPIC BeadChip. Results: Before acupuncture, all patients suffered of emotional exhaustion (EE) (MBI-EE score, 44±6), 81% suffered of depersonalization (DP) (MBI-DP score, 16±6), and 72% of low feelings of personal accomplishment (PA) (MBI-PA score, 29±9). After acupuncture, all MBI dimensions improved significantly (EE, 16±11 [p=1.5*10-4]; DP, 4±5 [p=5.3*10-4]; and PA, 40±6 [p=4.1*10-3]). For each patient, both methylomes obtained before and after acupuncture co-clustered in the multidimensional scaling plot, indicating a high level of similarity. Genes corresponding to the 10 most differentially methylated CpGs showed enrichment in the brain dopaminergic signalling, steroid synthesis and in the insulin sensitivity pathways. Conclusion: Acupuncture treatment was found to be highly effective on all burnout dimensions and the epigenetic targets identified were involved in some major disturbances of this syndrome.


EMBO Reports ◽  
2019 ◽  
Vol 20 (9) ◽  
Author(s):  
Sacha Benaoudia ◽  
Amandine Martin ◽  
Marta Puig Gamez ◽  
Gabrielle Gay ◽  
Brice Lagrange ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document