Mitochondria—Striking a balance between host and endosymbiont

Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. eaaw9855 ◽  
Author(s):  
Richard J. Youle

Mitochondria are organelles with their own genome that arose from α-proteobacteria living within single-celled Archaea more than a billion years ago. This step of endosymbiosis offered tremendous opportunities for energy production and metabolism and allowed the evolution of fungi, plants, and animals. However, less appreciated are the downsides of this endosymbiosis. Coordinating gene expression between the mitochondrial genomes and the nuclear genome is imprecise and can lead to proteotoxic stress. The clonal reproduction of mitochondrial DNA requires workarounds to avoid mutational meltdown. In metazoans that developed innate immune pathways to thwart bacterial and viral infections, mitochondrial components can cross-react with pathogen sensors and invoke inflammation. Here, I focus on the numerous and elegant quality control processes that compensate for or mitigate these challenges of endosymbiosis.

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 758 ◽  
Author(s):  
Karim Majzoub ◽  
Florian Wrensch ◽  
Thomas F. Baumert

Animal cells have evolved dedicated molecular systems for sensing and delivering a coordinated response to viral threats. Our understanding of these pathways is almost entirely defined by studies in humans or model organisms like mice, fruit flies and worms. However, new genomic and functional data from organisms such as sponges, anemones and mollusks are helping redefine our understanding of these immune systems and their evolution. In this review, we will discuss our current knowledge of the innate immune pathways involved in sensing, signaling and inducing genes to counter viral infections in vertebrate animals. We will then focus on some central conserved players of this response including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and cGAS-STING, attempting to put their evolution into perspective. To conclude, we will reflect on the arms race that exists between viruses and their animal hosts, illustrated by the dynamic evolution and diversification of innate immune pathways. These concepts are not only important to understand virus-host interactions in general but may also be relevant for the development of novel curative approaches against human disease.


2008 ◽  
Vol 89 (10) ◽  
pp. 2550-2564 ◽  
Author(s):  
Sem Genini ◽  
Peter L. Delputte ◽  
Roberto Malinverni ◽  
Maria Cecere ◽  
Alessandra Stella ◽  
...  

Porcine reproductive and respiratory syndrome is a major cause of economic loss for the swine industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) triggers weak and atypical innate immune responses, but key genes and mechanisms by which the virus interferes with the host innate immunity have not yet been elucidated. In this study, genes that control the response of the main target of PRRSV, porcine alveolar macrophages (PAMs), were profiled in vitro with a time-course experiment spanning the first round of virus replication. PAMs were obtained from six piglets and challenged with the Lelystad PRRSV strain, and gene expression was investigated using Affymetrix microarrays and real-time PCR. Of the 1409 differentially expressed transcripts identified by analysis of variance, two, five, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 9 and 12 h post-infection (p.i.), respectively. A PRRSV infection effect was detectable between 3 and 6 h p.i., and was characterized by a consistent downregulation of gene expression, followed by the start of the host innate immune response at 9 h p.i. The expression of beta interferon 1 (IFN-β), but not of IFN-α, was strongly upregulated, whilst few genes commonly expressed in response to viral infections and/or induced by interferons were found to be differentially expressed. A predominance of anti-apoptotic transcripts (e.g. interleukin-10), a shift towards a T-helper cell type 2 response and a weak upregulation of tumour necrosis factor-α expression were observed within 12 h p.i., reinforcing the hypotheses that PRRSV has developed sophisticated mechanisms to escape the host defence.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 104
Author(s):  
Piet Nuijten ◽  
Natalie Cleton ◽  
Jeroen van der Loop ◽  
Birgit Makoschey ◽  
Wilco Pulskens ◽  
...  

Bovine parainfluenza type 3 (BPIV3) and bovine respiratory syncytial virus (BRSV) may cause bovine respiratory disease (BRD) in very young calves, and therefore vaccination should induce protection at the youngest age and as quickly as possible. This can be achieved by intranasal vaccination with a vaccine containing live attenuated BRSV and BPIV3 virus strains. The objective of this study was to measure gene expression levels by means of RT-qPCR of proteins involved in the innate and adaptive immune response in the nasopharyngeal mucosae after administration of the above-mentioned vaccine and after challenge with BPIV3. Gene expression profiles were different between (i) vaccinated, (ii) nonvaccinated-challenged, and (iii) vaccinated-challenged animals. In nonvaccinated-challenged animals, expression of genes involved in development of disease symptoms and pathology were increased, however, this was not the case after vaccination. Moreover, gene expression patterns of vaccinated animals reflected induction of the antiviral and innate immune pathways as well as an initial Th1 (cytotoxic) cellular response. After challenge with BPIV3, the vaccinated animals were protected against nasal shedding of the challenge virus and clinical symptoms, and in parallel the expression levels of the investigated genes had returned to values that were found before vaccination. In conclusion, in comparison to the virulent wild-type field isolates, the two virus strains in the vaccine have lost their capacity to evade the immune response, resulting in the induction of an antiviral state followed by a very early activation of innate immune and antiviral responses as well as induction of specific cellular immune pathways, resulting in protection. The exact changes in the genomes of these vaccine strains leading to attenuation have not been identified. These data represent the real-life situation and can serve as a basis for further detailed research. This is the first report describing the effects on immune gene expression profiles in the nasal mucosae induced by intranasal vaccination with a bivalent, live BRSV-BPI3V vaccine formulation in comparison to wild-type infection with a virulent BPI3V strain.


2019 ◽  
Author(s):  
Caroline G. Williams ◽  
Joyce Sweeney Gibbons ◽  
Timothy R. Keiffer ◽  
Priya Luthra ◽  
Megan R. Edwards ◽  
...  

AbstractMěnglà virus (MLAV), identified inRousettusbats, is a phylogenetically distinct member of the familyFiloviridae. Because filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immune pathways, MLAV VP35, VP40 and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human andRousettuscells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon (IFN)-β promoter. MLAV VP35 inhibited IRF3 phosphorylation and interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibited PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or over-expressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFNβ promoter activation, a property shared by MARV VP40 and EBOV VP24. The inhibition of IFN induction was preserved in the presence of a Jak kinase inhibitor, demonstrating that inhibition of Jak-STAT signaling is not sufficient to explain inhibition of IFNβ promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α5, properties of EBOV VP24. MLAV VP24 also differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene, due to the absence of a Keap1-binding motif. These studies demonstrate similarities between MLAV and MARV in how they suppress IFN responses and differences in how MLAV VP24 interacts with host pathways.ImportanceEBOV and MARV, members of the familyFiloviridae, are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1 binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune suppressing functions that could facilitate human infection. They also demonstrate key differences in MLAV versus either EBOV or MARV engagement of host signaling pathways.


2020 ◽  
Vol 7 (1) ◽  
pp. 421-446 ◽  
Author(s):  
Efraín E. Rivera-Serrano ◽  
Anthony S. Gizzi ◽  
Jamie J. Arnold ◽  
Tyler L. Grove ◽  
Steven C. Almo ◽  
...  

Most cells respond to viral infections by activating innate immune pathways that lead to the induction of antiviral restriction factors. One such factor, viperin, was discovered almost two decades ago based on its induction during viral infection. Since then, viperin has been shown to possess activity against numerous viruses via multiple proposed mechanisms. Most recently, however, viperin was demonstrated to catalyze the conversion of cytidine triphosphate (CTP) to 3′-deoxy-3′,4′-didehydro-CTP (ddhCTP), a previously unknown ribonucleotide. Incorporation of ddhCTP causes premature termination of RNA synthesis by the RNA-dependent RNA polymerase of some viruses. To date, production of ddhCTP by viperin represents the only activity of viperin that links its enzymatic activity directly to an antiviral mechanism in human cells. This review examines the multiple antiviral mechanisms and biological functions attributed to viperin.


2020 ◽  
Author(s):  
Hongmei Li-Byarlay ◽  
Humberto Boncristiani ◽  
Gary Howell ◽  
Jake Herman ◽  
Lindsay Clark ◽  
...  

AbstractHoney bees (Apis mellifera L) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5mC DNA methylation profiles between IAPV-infected and control individuals at these time points—corresponding to the pre-replicative (5 hr), replicative (20 hr), and terminal (48 hr) phase of infection—indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.Author SummaryHoney bees, the most important managed pollinators, are experiencing unsustainable mortality. Israeli Acute Paralysis Virus (IAPV) causes economically important disease in honey bees, and it is emerging as a model system to study viral pathogen-host interactions in pollinators. The pupation stage is important for bee development but individuals are particularly vulnerable for parasitic mite infestations and viral infections. Currently, it is unclear how honey bee pupae respond to this virus. However, these responses, including gene expression and DNA methylomic changes, are critical to understand so that anti-viral genes can be identified and new anti-viral strategies be developed. Here, we use next-generation sequencing tools to reveal the dynamic changes of gene expression and DNA methylation as pupae succumb to IAPV infections after 5, 20, and 48 hours. We found that IAPV causes changes in regions of DNA methylation more at the beginning of infection than later. The activity of several common insect immune pathways are affected by the IAPV infections, as are some other fundamental biological processes. Expression of critical enzymes in DNA methylation are also induced by IAPV in a temporal manner. By comparing our results to other virus studies of honey bees and fruit flies, we identified common anti-viral immune responses. Thus, our study provides new insight on the genome responses of honey bees over the course of a fatal virus infection with theoretical and practical implications.


Open Biology ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 180267 ◽  
Author(s):  
Anna Klucnika ◽  
Hansong Ma

The mitochondrial genome is an evolutionarily persistent and cooperative component of metazoan cells that contributes to energy production and many other cellular processes. Despite sharing the same host as the nuclear genome, the multi-copy mitochondrial DNA (mtDNA) follows very different rules of replication and transmission, which translate into differences in the patterns of selection. On one hand, mtDNA is dependent on the host for its transmission, so selections would favour genomes that boost organismal fitness. On the other hand, genetic heterogeneity within an individual allows different mitochondrial genomes to compete for transmission. This intra-organismal competition could select for the best replicator, which does not necessarily give the fittest organisms, resulting in mito-nuclear conflict. In this review, we discuss the recent advances in our understanding of the mechanisms and opposing forces governing mtDNA transmission and selection in bilaterians, and what the implications of these are for mtDNA evolution and mitochondrial replacement therapy.


Sign in / Sign up

Export Citation Format

Share Document