scholarly journals A brain-wide atlas of synapses across the mouse lifespan

Science ◽  
2020 ◽  
pp. eaba3163 ◽  
Author(s):  
Mélissa Cizeron ◽  
Zhen Qiu ◽  
Babis Koniaris ◽  
Ragini Gokhale ◽  
Noboru H. Komiyama ◽  
...  

Synapses connect neurons together to form the circuits of the brain and their molecular composition controls innate and learned behavior. We have analyzed the molecular and morphological diversity of five billion excitatory synapses at single-synapse resolution across the mouse brain from birth to old age. A continuum of changes alters synapse composition in all brain regions across the lifespan. Expansion in synapse diversity produces differentiation of brain regions until early adulthood and compositional changes cause dedifferentiation in old age. The spatiotemporal synaptome architecture of the brain potentially accounts for lifespan transitions in intellectual ability, memory, and susceptibility to behavioral disorders.

2019 ◽  
Author(s):  
Mélissa Cizeron ◽  
Zhen Qiu ◽  
Babis Koniaris ◽  
Ragini Gokhale ◽  
Noboru H. Komiyama ◽  
...  

AbstractHow synapses change molecularly during the lifespan and across all brain circuits is unknown. We analyzed the protein composition of billions of individual synapses from birth to old age on a brain-wide scale in the mouse, revealing a program of changes in the lifespan synaptome architecture spanning individual dendrites to the systems level. Three major phases were uncovered, corresponding to human childhood, adulthood and old age. An arching trajectory of synaptome architecture drives the differentiation and specialization of brain regions to a peak in young adults before dedifferentiation returns the brain to a juvenile state. This trajectory underscores changing network organization and hippocampal physiology that may account for lifespan transitions in intellectual ability and memory, and the onset of behavioral disorders.One sentence summaryThe synaptome architecture of the mouse brain undergoes continuous changes that organize brain circuitry across the lifespan.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xue Chen ◽  
Joe Necus ◽  
Luis R. Peraza ◽  
Ramtin Mehraram ◽  
Yanjiang Wang ◽  
...  

AbstractBrain’s modular connectivity gives this organ resilience and adaptability. The ageing process alters the organised modularity of the brain and these changes are further accentuated by neurodegeneration, leading to disorganisation. To understand this further, we analysed modular variability—heterogeneity of modules—and modular dissociation—detachment from segregated connectivity—in two ageing cohorts and a mixed cohort of neurodegenerative diseases. Our results revealed that the brain follows a universal pattern of high modular variability in metacognitive brain regions: the association cortices. The brain in ageing moves towards a segregated modular structure despite presenting with increased modular heterogeneity—modules in older adults are not only segregated, but their shape and size are more variable than in young adults. In the presence of neurodegeneration, the brain maintains its segregated connectivity globally but not locally, and this is particularly visible in dementia with Lewy bodies and Parkinson’s disease dementia; overall, the modular brain shows patterns of differentiated pathology.


2021 ◽  
Author(s):  
Edita Bulovaite ◽  
Zhen Qiu ◽  
Maximillian Kratschke ◽  
Adrianna Zgraj ◽  
David Fricker ◽  
...  

Protein turnover is required for synapse maintenance and remodelling and may impact memory duration. We quantified the lifetime of postsynaptic protein PSD95 in individual excitatory synapses across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of protein lifetimes that may extend from a few hours to several months, with distinct spatial distributions in dendrites, neuron types and brain regions. Short protein lifetime (SPL) synapses are enriched in developing animals and in regions controlling innate behaviors, whereas long protein lifetime (LPL) synapses accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. The protein lifetime synaptome architecture is disrupted in an autism model, with synapse protein lifetime increased throughout the brain. These findings add a further layer to synapse diversity in the brain and enrich prevailing concepts in behavior, development, ageing and brain repair.


Author(s):  
M. C. Whitehead

A fundamental problem in taste research is to determine how gustatory signals are processed and disseminated in the mammalian central nervous system. An important first step toward understanding information processing is the identification of cell types in the nucleus of the solitary tract (NST) and their synaptic relationships with oral primary afferent terminals. Facial and glossopharyngeal (LIX) terminals in the hamster were labelled with HRP, examined with EM, and characterized as containing moderate concentrations of medium-sized round vesicles, and engaging in asymmetrical synaptic junctions. Ultrastructurally the endings resemble excitatory synapses in other brain regions.Labelled facial afferent endings in the RC subdivision synapse almost exclusively with distal dendrites and dendritic spines of NST cells. Most synaptic relationships between the facial synapses and the dendrites are simple. However, 40% of facial endings engage in complex synaptic relationships within glomeruli containing unlabelled axon endings particularly ones termed "SP" endings. SP endings are densely packed with small, pleomorphic vesicles and synapse with both the facial endings and their postsynaptic dendrites by means of nearly symmetrical junctions.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


Sign in / Sign up

Export Citation Format

Share Document