scholarly journals Single-cell transcriptional analysis reveals ILC-like cells in zebrafish

2018 ◽  
Vol 3 (29) ◽  
pp. eaau5265 ◽  
Author(s):  
Pedro P. Hernández ◽  
Paulina M. Strzelecka ◽  
Emmanouil I. Athanasiadis ◽  
Dominic Hall ◽  
Ana F. Robalo ◽  
...  

Innate lymphoid cells (ILCs) are important mediators of the immune response and homeostasis in barrier tissues of mammals. However, the existence and function of ILCs in other vertebrates are poorly understood. Here, we use single-cell RNA sequencing to generate a comprehensive atlas of zebrafish lymphocytes during tissue homeostasis and after immune challenge. We profiled 14,080 individual cells from the gut of wild-type zebrafish, as well as ofrag1-deficient zebrafish that lack T and B cells, and discovered populations of ILC-like cells. We uncovered arorc-positive subset of ILCs that could express cytokines associated with type 1, 2, and 3 responses upon immune challenge. Specifically, these ILC-like cells expressedil22andtnfaafter exposure to inactivated bacteria oril13after exposure to helminth extract. Cytokine-producing ILC-like cells express a specific repertoire of novel immune-type receptors, likely involved in recognition of environmental cues. We identified additional novel markers of zebrafish ILCs and generated a cloud repository for their in-depth exploration.

2018 ◽  
Author(s):  
Pedro P. Hernández ◽  
Paulina M. Strzelecka ◽  
Emmanouil I. Athanasiadis ◽  
Ana F. Robalo ◽  
Catherine M. Collins ◽  
...  

AbstractInnate lymphoid cells (ILCs) are important mediators of the immune response and homeostasis in barrier tissues of mammals. However, the existence and function of ILCs in other vertebrates is poorly understood. Here, we use single-cell RNA sequencing to generate a comprehensive atlas of zebrafish lymphocytes during tissue homeostasis and following immune challenge. We profiled 14,080 individual cells from the gut of wild-type zebrafish, as well as of rag1-deficient fish which lack T and B cells, and discovered diverse populations of helper ILC-like cells. Unexpectedly, fish displayed a rorc-positive, naïve subset that established a Type 3 or Type 2 response only upon immune challenge. Specifically, naïve ILC-like cells expressed il22 and tnfa following exposure to inactivated bacteria, or il13 following exposure to helminth extract. Cytokine-producing ILC-like cells express a specific repertoire of novel immune-type receptors, likely involved in recognition of environmental cues. We identified additional novel markers of zebrafish ILCs and generated a cloud repository for their in-depth exploration.


2004 ◽  
Vol 24 (13) ◽  
pp. 6094-6103 ◽  
Author(s):  
Christine Brender ◽  
Ruth Columbus ◽  
Donald Metcalf ◽  
Emanuela Handman ◽  
Robyn Starr ◽  
...  

ABSTRACT Suppressors of cytokine signaling (SOCSs) are key regulators of cytokine-induced responses in hematopoietic as well as nonhematopoietic cells. SOCS1 and SOCS3 have been shown to modulate T-cell responses, whereas the roles of other SOCS family members in the regulation of lymphocyte function are less clear. Here, we report the generation of mice with a targeted disruption of the Socs5 gene. Socs5 −/− mice were born in a normal Mendelian ratio and were healthy and fertile. We found that SOCS5 is expressed in primary B and T cells in wild-type mice. However, no abnormalities in the lymphocyte compartment were seen in SOCS5-deficient mice. We examined antigen- and cytokine-induced proliferative responses in B and T cells in the absence of SOCS5 and found no deviations from the responses seen in wild-type cells. Because SOCS5 has been implicated in Th1 differentiation, we also investigated the importance of SOCS5 in T helper cell responses. Unexpectedly, SOCS5-deficient CD4 T cells showed no abnormalities in Th1/Th2 differentiation and Socs5 −/− mice showed normal resistance to infection with Leishmania major. Therefore, although SOCS5 is expressed in primary B and T cells, it appears to be dispensable for the regulation of lymphocyte function.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 541-541
Author(s):  
Giancarlo Castaman ◽  
Sofia Helene Giacomelli ◽  
Paula M. Jacobi ◽  
Tobias Obser ◽  
Reinhard Schneppenheim ◽  
...  

Abstract Abstract 541 Background. Von Willebrand Disease (VWD) is caused by mutations in von Willebrand factor (VWF) that have different pathophysiologic effect in causing low plasma VWF levels. Type 1 VWD includes patients with quantitative plasma VWF deficiency with normal VWF structure and function. Aim of the study. We report three different novel type 1 VWF mutations (A1716P, C2190Y and R2663C) which although located in different VWF domains are associated with reduced secretion and lack of formation of Weibel-Palade body-like granules. Methods. Transient expression of recombinant mutant full-length VWF in 293 EBNA cells was performed and secretion, collagen binding, and GpIb binding assessed in comparison to wild-type VWF. Furthermore, expression was also examined in HEK293 cells that form Weibel-Palade body (WPB)-like granules when transfected with wt VWF. Results. The multimer analysis of plasma VWF was compatible with type 1 VWD. The results of 3 different expression experiments showed a slightly reduced VWF synthesis and drastically impaired secretion into the medium with homozygous expression. In HEK293 cells, homozygous A1716P and C2190Y VWF variants failed to form WPB-like granules, while R2663C was capable of forming granules, but had fewer cells with granules and more with ER-localized VWF. Heterozygous expression of A1716P and C2160Y VWF variants had a negative impact on wild-type VWF and WPB-like granules were observed in transfected cells. Conclusions. Our results demonstrate that homozygous and heterozygous quantitative VWF deficiency caused by missense VWF mutations can be associated with inability to form endothelial Weibel-Palade-like granules and mutations in different VWF domains can affect the formation of these organelles. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 983-983
Author(s):  
Christopher J. Ng ◽  
Alice Liu ◽  
Katrina J. Ashworth ◽  
Kenneth L. Jones ◽  
Jorge Di Paola

Abstract Background Von Willebrand disease (VWD) type 1 is characterized by low von Willebrand factor (VWF) levels and mucocutaneous bleeding (MCB). Approximately 50% of patients with VWD type 1 exhibit mutations in VWF. However, a large number of patients with VWF levels between 30-50 IU/dL do not show mutations in VWF indicating that other mechanisms are involved. Blood outgrowth endothelial cells (BOECs) are a source of donor-specific endothelial cells and have demonstrated impairments in VWF release and packaging in patients with VWD. BOECs have not been evaluated in individuals with low VWF levels. Hypothesis/Objective We hypothesize that BOECs from individuals with low VWF levels will reveal unique VWF and genome wide epigenetic signatures that may explain the altered plasma VWF levels seen in these patients. Methods BOEC Derivation: Patients with low VWF levels and MCB (30-50 IU/dL) were enrolled in an IRB-approved study. The mononuclear layer from whole blood was isolated and plated onto collagen coated plates. After extended incubation, the presence of BOECs was confirmed by visual morphology and flow cytometry. VWF Transcriptional Analysis: 9 cells lines including: a) 2 BOEC cell lines from control individuals and a HUVEC cell line and c) BOECs from individuals with low VWF, were assayed via single cell RNA sequencing. Bioinformatic analysis included generalized transcriptional expression and single cell expression of VWF. RNA-sequencing expression data was filtered according to the following standardized algorithm. Cells that were defined as monocytes (TYROBP expression > 2 copies) were excluded. Following monocyte exclusions, cells were determined to be of endothelial origin if they demonstrated the presence of PECAM1, CDH5, ROBO4, ESAM, TIE1, or NOTCH4 transcripts, as previously reported by Butler et al. (Cell Reports, 2016). Epigenetic Profiling:Genomic DNA was extracted from BOECs and from peripheral leukocytes (paired to the BOEC draw sample) and analyzed for DNA methylation via an Illumina 850K methylation array. Results BOEC Derivation:A total of eight BOEC lines were generated, 6 from individuals with MCB and VWF levels between 30-50 IU/dL (5:1 female: male ratio, age range 11-54 years) and 2 from healthy controls (2 female, age range 22-39 years) with normal VWF levels and no symptoms of MCB. VWF Expression is decreased in Low VWF Samples: Overall transcript expression of VWF was significantly decreased in low VWF BOEC samples (5.341 transcripts/cell) vs. control endothelial cells (9.076 transcripts/cell), P <0.0001. Generalized Methylation Profiling:Via adjusted P-values, there were 129 methylation sites across multiple genes that were differentially methylated in Low VWF BOECs vs. control endothelial cells. A cluster plot demonstrates that the two control BOEC samples were generally clustered as compared to the other samples (Figure 1A). VWF Specific Methylation: The Illumina 850K array covers 70 prospective methylation sites in VWF, ranging from upstream of the transcriptional start site through the length of the gene. A previous report demonstrated that differences in 8 methylation sites in the VWF promoter correlated with VWF expression (Yuan et al. Nature Communications 2016). 7 of these sites are covered in our assay. Across all of those 7 sites, there was significant increased methylation of the CpG islands in the Low VWF BOECs when compared to the control endothelial cells (Figure 1B). Stability of VWF Methylation:To ensure that the isolation and culture of BOECS does not significantly affect the methylation status of VWF, we conducted a Pearson correlation analysis and demonstrated that peripheral leukocyte (at time of blood draw) and BOEC methylation is highly correlated at VWF specific methylation sites (R2 0.6, P = 0.0004) (Figure 1C). Conclusions Single cell RNA sequencing and genome wide methylation assays of BOECs from individuals with low VWF reveal significant differences in generalized methylation status when compared to BOECs from individuals with normal VWF levels and HUVECs. There is transcriptional downregulation of VWF in low VWF BOECs that is associated with hypermethylation of 7 specific VWF CpG sites in the VWF promoter. Additional sites are being evaluated. Finally, we validated the methylation status of BOECs by demonstrating high correlation with the methylation status of leukocytes from the same individuals. Figure 1 Figure 1. Disclosures Ng: Shire: Consultancy; CSL Behring: Consultancy.


Immunity ◽  
2019 ◽  
Vol 51 (3) ◽  
pp. 479-490.e6 ◽  
Author(s):  
Melissa M. Berrien-Elliott ◽  
Yaping Sun ◽  
Carly Neal ◽  
Aaron Ireland ◽  
Maria C. Trissal ◽  
...  

ISRN Oncology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Raymond R. Mattingly

The ability to selectively and directly target activated Ras would provide immense utility for treatment of the numerous cancers that are driven by oncogenic Ras mutations. Patients with disorders driven by overactivated wild-type Ras proteins, such as type 1 neurofibromatosis, might also benefit from progress made in that context. Activated Ras is an extremely challenging direct drug target due to the inherent difficulties in disrupting the protein:protein interactions that underlie its activation and function. Major investments have been made to target Ras through indirect routes. Inhibition of farnesyl transferase to block Ras maturation has failed in large clinical trials. Likely reasons for this disappointing outcome include the significant and underappreciated differences in the isoforms of Ras. It is still plausible that inhibition of farnesyl transferase will prove effective for disease that is driven by activated H-Ras. The principal current focus of drugs entering clinic trial is inhibition of pathways downstream of activated Ras, for example, trametinib, a first-in-class MEK inhibitor. The complexity of signaling that is driven by activated Ras indicates that effective inhibition of oncogenic transduction through this approach will be difficult, with resistance being likely to emerge through switch to parallel pathways. Durable disease responses will probably require combinatorial block of several downstream targets.


2004 ◽  
Vol 186 (15) ◽  
pp. 5078-5086 ◽  
Author(s):  
Shipan Dai ◽  
Daoguo Zhou

ABSTRACT Salmonella strains utilize a type III secretion system for their successful survival and replications inside host cells. SseF is one of the several effector proteins that are required for conferring this survival ability by altering the trafficking of the Salmonella-containing vacuoles. These effector proteins often require appropriate chaperones to maintain their stabilities inside the bacteria. These chaperones are also known to assist the subsequent secretion and translocation of their substrates. We report here that SscB acts as the chaperone for SseF, an effector for the Salmonella pathogenicity island 2 (SPI-2). We found that the sscB gene is required for the formation of Salmonella sp.-induced continuous filaments in epithelial cells. Efficient Salmonella replication in macrophages requires SscB function. Intracellular and secretion levels of SseF are greatly reduced in an sscB mutant strain compared to the wild-type strain. A protein stability assay demonstrated that the half-life of SseF is significantly shortened in the absence of SscB. Transcriptional analysis of the sseF gene showed that the effect of SscB on the SseF level is not at the transcriptional level. A coprecipitation experiment indicated that SscB interacts with SseF. In summary, our results indicate that SscB is a chaperone for SPI-2 effector SseF to facilitate its secretion and function inside the host cells.


2021 ◽  
Author(s):  
Dan Corral ◽  
Alison Charton ◽  
Maria Z Krauss ◽  
Eve Blanquart ◽  
Florence Levillain ◽  
...  

AbstractTissue-resident innate lymphoid cells (ILCs) regulate tissue homeostasis and protect against pathogens at mucosal surfaces and are key players at the interface of innate and adaptive immunity. How ILCs adapt their phenotype and function to environmental cues in their tissue of residence remains to be fully understood. Here we show that Mycobacterium tuberculosis infection alters the biology of lung ILCs and, in particular, induces the emergence of a non-classical, protective, interferon-γ-producing ILC1-like population. Adoptive transfer, fate-mapping and in vitro differentiation experiments revealed that ILC1-like cells originate from immature ILC2 rather than from mature ILC2. This plasticity is controlled by type 1 cytokines and a glycolytic program involving the transcription factor HIF1α. Collectively, our data reveal how tissue-resident ILCs adapt to their inflammatory and metabolic environment to undergo phenotypic and functional changes toward a pathogen-adapted immune response.


2001 ◽  
Vol 75 (20) ◽  
pp. 9753-9761 ◽  
Author(s):  
Jing-Yuan Fang ◽  
Judy A. Mikovits ◽  
Rachel Bagni ◽  
Cari L. Petrow-Sadowski ◽  
Francis W. Ruscetti

ABSTRACT DNA methylation, by regulating the transcription of genes, is a major modifier of the eukaryotic genome. DNA methyltransferases (DNMTs) are responsible for both maintenance and de novo methylation. We have reported that human immunodeficiency virus type 1 (HIV-1) infection increases DNMT1 expression and de novo methylation of genes such as the gamma interferon gene in CD4+ cells. Here, we examined the mechanism(s) by which HIV-1 infection increases the cellular capacity to methylate genes. While the RNAs and proteins of all three DNMTs (1, 3a, and 3b) were detected in Hut 78 lymphoid cells, only the expression of DNMT1 was significantly increased 3 to 5 days postinfection. This increase was observed with either wild-type HIV-1 or an integrase (IN) mutant, which renders HIV replication defective, due to the inability of the provirus to integrate into the host genome. Unintegrated viral DNA is a common feature of many retroviral infections and is thought to play a role in pathogenesis. These results indicate another mechanism by which unintegrated viral DNA affects the host. In addition to the increase in overall genomic methylation, hypermethylation and reduced expression of thep16 INK4A gene, one of the most commonly altered genes in human cancer, were seen in cells infected with both wild-type and IN-defective HIV-1. Thus, infection of lymphoid cells with integration-defective HIV-1 can increase the methylation of CpG islands in the promoters of genes such as thep16 INK4A gene, silencing their expression.


Sign in / Sign up

Export Citation Format

Share Document