scholarly journals Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems

2014 ◽  
Vol 6 (252) ◽  
pp. 252ra120-252ra120 ◽  
Author(s):  
Amir Ardeshir ◽  
Nicole R. Narayan ◽  
Gema Méndez-Lagares ◽  
Ding Lu ◽  
Marcus Rauch ◽  
...  

Diet has a strong influence on the intestinal microbiota in both humans and animal models. It is well established that microbial colonization is required for normal development of the immune system and that specific microbial constituents prompt the differentiation or expansion of certain immune cell subsets. Nonetheless, it has been unclear how profoundly diet might shape the primate immune system or how durable the influence might be. We show that breast-fed and bottle-fed infant rhesus macaques develop markedly different immune systems, which remain different 6 months after weaning when the animals begin receiving identical diets. In particular, breast-fed infants develop robust populations of memory T cells as well as T helper 17 (TH17) cells within the memory pool, whereas bottle-fed infants do not. These findings may partly explain the variation in human susceptibility to conditions with an immune basis, as well as the variable protection against certain infectious diseases.

2021 ◽  
Vol 22 (17) ◽  
pp. 9460
Author(s):  
Helmut Segner ◽  
Christyn Bailey ◽  
Carolina Tafalla ◽  
Jun Bo

The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 679-679
Author(s):  
Marina Watowich ◽  
Kenneth Chiou ◽  
Michael Montague ◽  
Melween Martínez ◽  
James Higham ◽  
...  

Abstract Extreme adverse events such as natural disasters can accelerate disease progression and promote chronic inflammation. These phenotypes also increase in prevalence with age, suggesting that experiencing adversity might accelerate aging of the immune system. Adversity can induce persistent gene regulatory changes which may mechanistically explain the immune similarities between aging and adversity. To test how immune system aging is accelerated following a natural disaster, we measured the impact of Hurricane Maria on peripheral blood immune cell gene expression in a population of free-ranging rhesus macaques (Macaca mulatta) from before (n=435) versus after (n=108) Hurricane Maria. Experiencing Hurricane Maria altered the expression of 260 genes (FDR<10%), which were primarily involved in the inflammatory response. There was significant overlap in these hurricane-affected and age-associated genes with 40% (n=104) being associated with both the hurricane and aging, more than double the expected amount (Fisher’s Exact Test OR=3.7, p=4.06 x 10–21). The effects of the hurricane and aging on gene expression were also significantly correlated (rho=0.23, p=1.33 x 10-84), suggesting that they alter similar molecular pathways in the immune system. Further, we found that animals that experienced the hurricane had a gene expression profile that was, on average, 1.6 years older than animals that did not experience the hurricane (the equivalent of 6–7 years in a human lifespan, p=0.003). Together, our results provide some of the first evidence that extreme natural disasters mechanistically accelerates aging in the immune system.


2020 ◽  
Vol 21 (1) ◽  
pp. 52-65
Author(s):  
Sridhar Muthusami ◽  
Balasubramanian Vidya ◽  
Esaki M Shankar ◽  
Jamuna Vadivelu ◽  
Ilangovan Ramachandran ◽  
...  

Hormones are known to influence various body systems that include skeletal, cardiac, digestive, excretory, and immune systems. Emerging investigations suggest the key role played by secretions of endocrine glands in immune cell differentiation, proliferation, activation, and memory attributes of the immune system. The link between steroid hormones such as glucocorticoids and inflammation is widely known. However, the role of peptide hormones and amino acid derivatives such as growth and thyroid hormones, prolactin, dopamine, and thymopoietin in regulating the functioning of the immune system remains unclear. Here, we reviewed the findings pertinent to the functional role of hormone-immune interactions in health and disease and proposed perspective directions for translational research in the field.


2021 ◽  
Author(s):  
Laura Sibley ◽  
Owen Daykin-Pont ◽  
Charlotte Sarfas ◽  
Jordan Pascoe ◽  
Alexandra Morrison ◽  
...  

Abstract Rhesus (Macaca mulatta) and cynomolgus (Macaca fasicularis) macaques of distinct genetic origin are understood to vary in susceptibility to Mycobacterium tuberculosis, and therefore differences in their immune systems may account for the differences in disease control. Monocyte:lymphocyte (M:L) ratio has been identified as a risk factor for M. tuberculosis infection and is known to vary between macaque species. We aimed to characterise the constituent monocyte and lymphocyte populations between macaque species, and profile other major immune cell subsets including: CD4+ and CD8+ T-cells, NK-cells, B-cells, monocyte subsets and myeloid dendritic cells. We found immune cell subsets to vary significantly between macaque species. Frequencies of CD4+ and CD8+ T-cells and the CD4:CD8 ratio showed significant separation between species, while myeloid dendritic cells best associated macaque populations by M. tuberculosis susceptibility. A more comprehensive understanding of the immune parameters between macaque species may contribute to the identification of new biomarkers and correlates of protection.


2021 ◽  
Author(s):  
Yang Hu ◽  
Yudai Xu ◽  
Lipeng Mao ◽  
Wen Lei ◽  
Jan Jian Xiang ◽  
...  

Abstract Background: Human immune system functions over an entire lifetime, yet how and why the immune system becomes less effective with age are not well understood. Therefore, the aim of this study is to exploit a large-scale population-based strategy to systematically identify genes and pathways differentially expressed as a function of chronological age. Despite the importance of age and race in shaping immune cell numbers and functions, it is unclear whether Asian and Caucasian immune systems go through similar gene expression changes throughout their lifespan, and to what extent these aging-associated variations are shared among ethnicities. Results: Here, we characterize peripheral blood mononuclear cells transcriptome from 19 healthy adults of RNA-seq data and 153 healthy subjects of micoarray data with 21~90 years of age using the weighted gene correlation network analyses (WGCNA). These data reveal a set of insightful gene expression modules and representative gene biomarkers for human immune system aging from Asian and Caucasian ancestry, respectively. Among them, the aging-specific modules may show an age-related gene expression variation spike around early-seventies. In addition, we find the top hub genes including NUDT7, CLPB, OXNAD1 and MLLT3 are shared between Asian and Caucasian aging related modules and further validated in human PBMCs from different age groups. Conclusion: Overall, our findings reveal how age and race differentially affect the immune systems between Asian and Caucasian, as well as discovered a common genetic variant that greatly impacts normal PBMC aging between Asian and Caucasian.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 925-925
Author(s):  
Mitchell Sanchez-Rosado ◽  
Noah Snyder-Mackler ◽  
Lauren Brent ◽  
James Higham ◽  
Clare Kimock ◽  
...  

Abstract Social adversity can impact immune function and is associated with increased morbidity and mortality. Many of these immune-related changes resemble the effects of the natural aging process. To date, little is known about the effects of social adversity on the immune system change across the lifetime. Here, we investigated how aging and social adversity (measured as social status) impact immune cell proportions. We performed flow cytometry on peripheral whole blood from a population of free-ranging rhesus macaques to quantify changes on immune cell proportions across the lifespan (n=99) and across different social statuses (n=53). Overall, we found that high adversity recapitulated the effects of aging. We found significant shared decreases in CD3+/CD4+ T cell proportions and corresponding increases in CD3+/CD8+ T cell proportions between individuals of older ages and low social status. These findings suggest that social adversity has similar effects to aging on T cell proportions, possibly affecting the T cell component of the immune response. In contrast, CD3+/CD4+/CD25+ T regulatory cell proportions increased with age, which is typical of normal aging. Contrary to our expectations, these cells were less abundant in low status individuals, indicating some overall regulatory immune deficits specific to lower status individuals. CD3+/CD8+/CD25+ T regulatory cells, which contribute to self-tolerance, were higher in high status individuals, suggesting that overall primary immune regulatory cells can be affected by social adversity and impair the regulation of inflammation. We provide evidence that social adversity alters immune cell proportions, implicating it in the development of inflammatory and/or aging-related diseases.


2017 ◽  
Vol 235 (1) ◽  
pp. R1-R12 ◽  
Author(s):  
Christopher M Mulligan ◽  
Jacob E Friedman

Transmission of metabolic diseases from mother to child is multifactorial and includes genetic, epigenetic and environmental influences. Evidence in rodents, humans and non-human primates support the scientific premise that exposure to maternal obesity or high-fat diet during pregnancy creates a long-lasting metabolic signature on the infant innate immune system and the juvenile microbiota, which predisposes the offspring to obesity and metabolic diseases. In neonates, gastrointestinal microbes introduced through the mother are noted for their ability to serve as direct inducers/regulators of the infant immune system. Neonates have a limited capacity to initiate an immune response. Thus, disruption of microbial colonization during the early neonatal period results in disrupted postnatal immune responses that highlight the neonatal period as a critical developmental window. Although the mechanisms are poorly understood, increasing evidence suggests that maternal obesity or poor diet influences the development and modulation of the infant liver and other end organs through direct communication via the portal system, metabolite production, alterations in gut barrier integrity and the hematopoietic immune cell axis. This review will focus on how maternal obesity and dietary intake influence the composition of the infant gut microbiota and how an imbalance or maladaptation in the microbiota, including changes in early pioneering microbes, might contribute to the programming of offspring metabolism with special emphasis on mechanisms that promote chronic inflammation in the liver. Comprehension of these pathways and mechanisms will elucidate our understanding of developmental programming and may expand the avenue of opportunities for novel therapeutics.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246959
Author(s):  
Francesca Marcato ◽  
Henry van den Brand ◽  
Christine A. Jansen ◽  
Victor P. M. G. Rutten ◽  
Bas Kemp ◽  
...  

The aim of this study was to investigate effects of pre-transport diets, transport durations and transport conditions on immune cell subsets, haptoglobin, cortisol and bilirubin of young calves upon arrival at the veal farm. An experiment was conducted with a 2 × 2 × 2 factorial arrangement with 3 factors: 1) provision of rearing milk or electrolytes at the collection center (CC); 2) transport duration (6 or 18 hours) and 3) transport condition (open truck or conditioned truck). Holstein-Friesian and cross-bred calves were used (N = 368; 18 ± 4 days; 45.3 ± 3.3 kg). Blood samples were collected from calves (N = 128) at the collection center, immediately post-transport (T0) and 4, 24, 48 hours, week 1, 3 and 5 post-transport. Blood was analyzed for cortisol, bilirubin, haptoglobin, IgG and IgM. Moreover, cell counts of neutrophils, lymphocytes, monocytes, basophils and eosinophils were measured in blood samples taken at the collection center and T0. In these same blood samples, different lymphocyte populations were characterized by flow cytometry, including CD14+ cells, NK cells, δγ+ T cells, CD8+ cells, CD4+ cells and CD21+ cells. Calves transported in the conditioned truck had higher amounts of white blood cell count (WBC) (Δ = 1.39 × 109/l; P = 0.01), monocytes (Δ = 0.21 × 109/l; P = 0.04), neutrophils (Δ = 0.93 × 109/l; P = 0.003), than calves transported in the open truck regardless, of pre-transport diet or transport duration. The study showed that transport condition and duration influenced parts of the innate immune system of young veal calves. Cortisol, bilirubin and WBC seemed to be connected by similar underlying mechanisms in relation to transport conditions. However, it is unclear which specific pathways in the immune system of young calves are affected by different transport conditions (e.g. temperature, humidity, draught).


2020 ◽  
Vol 21 (16) ◽  
pp. 5918
Author(s):  
Ana Bocanegra ◽  
Ester Blanco ◽  
Gonzalo Fernandez-Hinojal ◽  
Hugo Arasanz ◽  
Luisa Chocarro ◽  
...  

The use of monoclonal antibodies targeting PD-1/PD-L1 axis completely changed anticancer treatment strategies. However, despite the significant improvement in overall survival and progression-free survival of patients undergoing these immunotherapy treatments, the only clinically accepted biomarker with some prediction capabilities for the outcome of the treatment is PD-L1 expression in tumor biopsies. Nevertheless, even when having PD-L1-positive tumors, numerous patients do not respond to these treatments. Considering the high cost of these therapies and the risk of immune-related adverse events during therapy, it is necessary to identify additional biomarkers that would facilitate stratifying patients in potential responders and non-responders before the start of immunotherapies. Here, we review the utility of PD-L1 expression not only in tumor cells but in immune system cells and their influence on the antitumor activity of immune cell subsets.


Sign in / Sign up

Export Citation Format

Share Document