Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients

2015 ◽  
Vol 7 (283) ◽  
pp. 283ra55-283ra55 ◽  
Author(s):  
Michaela Semeraro ◽  
Sylvie Rusakiewicz ◽  
Véronique Minard-Colin ◽  
Nicolas F. Delahaye ◽  
David Enot ◽  
...  

The immunosurveillance mechanisms governing high-risk neuroblastoma (HR-NB), a major pediatric malignancy, have been elusive. We identify a potential role for natural killer (NK) cells, in particular the interaction between the NK receptor NKp30 and its ligand, B7-H6, in the metastatic progression and survival of HR-NB after myeloablative multimodal chemotherapy and stem cell transplantation. NB cells expressing the NKp30 ligand B7-H6 stimulated NK cells in an NKp30-dependent manner. Serum concentration of soluble B7-H6 correlated with the down-regulation of NKp30, bone marrow metastases, and chemoresistance, and soluble B7-H6 contained in the serum of HR-NB patients inhibited NK cell functions in vitro. The expression of distinct NKp30 isoforms affecting the polarization of NK cell functions correlated with 10-year event-free survival in three independent cohorts of HR-NB in remission from metastases after induction chemotherapy (n= 196,P< 0.001), adding prognostic value to known risk factors such as N-Myc amplification and age >18 months. We conclude that the interaction between NKp30 and B7-H6 may contribute to the fate of NB patients and that both the expression of NKp30 isoforms on circulating NK cells and the concentration of soluble B7-H6 in the serum may be clinically useful as biomarkers for risk stratification.

Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3321-3330 ◽  
Author(s):  
R. Keith Reeves ◽  
Premeela A. Rajakumar ◽  
Tristan I. Evans ◽  
Michelle Connole ◽  
Jacqueline Gillis ◽  
...  

Abstract Natural killer (NK) cells are classically viewed as effector cells that kill virus-infected and neoplastic cells, but recent studies have identified a rare mucosal NK- cell subpopulation secreting the TH17 cytokine IL-22. Here, we report identification of 2 distinct lineages of mucosal NK cells characterized as NKG2A+NFIL3+RORC– and NKp44+NFIL3+RORC+. NKG2A+ NK cells were systemically distributed, cytotoxic, and secreted IFN-γ, whereas NKp44+ NK cells were mucosae-restricted, noncytotoxic, and produced IL-22 and IL-17. During SIV infection, NKp44+ NK cells became apoptotic, were depleted, and had an altered functional profile characterized by decreased IL-17 secretion; increased IFN-γ secretion; and, surprisingly, increased potential for cytotoxicity. NKp44+ NK cells showed no evidence of direct SIV infection; rather, depletion and altered function were associated with SIV-induced up-regulation of inflammatory mediators in the gut, including indoleamine 2,3-dioxygenase 1. Furthermore, treatment of NKp44+ NK cells with indoleamine 2,3-dioxygenase 1 catabolites in vitro ablated IL-17 production in a dose-dependent manner, whereas other NK-cell functions were unaffected. Thus lentiviral infection both depletes and modifies the functional repertoire of mucosal NK cells involved in the maintenance of gut integrity, a finding that highlights the plasticity of this rare mucosal NK-cell population.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1802
Author(s):  
Nayoung Kim ◽  
Mi Yeon Kim ◽  
Woo Seon Choi ◽  
Eunbi Yi ◽  
Hyo Jung Lee ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1955-1955
Author(s):  
Sumithira Vasu ◽  
Nelli Bejanyan ◽  
Steven Devine ◽  
Elizabeth Krakow ◽  
Elizabeth Krakow ◽  
...  

Background and Rationale: Relapse remains the leading cause of treatment failure for patients with high-risk acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) undergoing allogeneic blood or marrow transplantation (BMT). Although relapse rates vary based on patient population, age, and conditioning intensity, relapse is experienced in at least 30-50% after conventional BMT in high-risk AML/MDS. Initial safety and post-BMT relapse risk reduction results are reported by investigators at MD Anderson Cancer Center in a phase I study of ex vivo-expanded, donor-derived, haploidentical natural killer (NK)-cell infusion in conjunction with haploBMT. Of 13 patients with high-risk myeloid malignancies treated with NK cells, no infusion reactions or dose-limiting toxicities occurred and only 1 patient, treated at the lowest dose of 1×105 cells/kg, relapsed (Ciurea, Blood 2017). This experience supports investigation of CSTD002, a product derived from haploidentical donor NK cells and expanded ex vivo using plasma membrane (PM21) nanoparticles bearing membrane-bound IL-21 and 4-1BBL. This study represents a public-private partnership between the sponsor (Kiadis Pharma) and the Blood and Marrow Transplant Clinical Trials Network (BMT CTN), leveraging existing National Institutes of Health-supported clinical trials infrastructure to conduct a complex cellular immunotherapy trial. We used contemporary, unpublished data from the Center for International Blood and Marrow Transplant Research registry to determine baseline relapse rates that informed the statistical design. Doses of NK cells expanded by a novel method and exceeding those previously achieved in most published studies will be given in the peri-transplant period to test the hypothesis that haploidentical NK cells can mediate an effective anti-leukemia response. Trial Design and Methods: BMT CTN 1803 is a phase II, single-arm, open-label, multicenter trial designed to investigate the safety and efficacy of CSTD002 for the treatment of patients with high-risk AML or MDS undergoing haploBMT. An initial safety run-in phase will precede enrollment into the full study of approximately 60 patients. Major inclusion criteria of patients and donors are listed in the Table. Peripheral blood will be drawn from the donor to start the NK-cell expansion approximately 5 weeks before the planned haploBMT. Patients will receive intravenous (IV) melphalan 140 mg/m2 (100 mg/m2 for patients ≥60 years old) on Day -7; fludarabine 40 mg/m2 IV on Days -7, -6, -5, and -4; and 2 Gy of total body irradiation on Day -3. Donor bone marrow will be harvested and given on Day 0. Three doses of CSTD002 will be administered IV on Days -2, +7, and +28, relative to the haploBMT. The recommended dose of CSTD002 for administration will be formulated at 1×108 NK cells/kg of recipient body weight. Graft-versus-host disease (GVHD) prophylaxis is post-transplantation cyclophosphamide with tacrolimus and mycophenolate mofetil. The primary endpoint is cumulative incidence of relapse at 1 year post haploBMT in patients receiving at least 1 infusion of CSTD002. Secondary endpoints are safety and tolerability of CSTD002; overall survival; non-relapse mortality; relapse-free survival; GVHD-free survival; cumulative incidence of acute GVHD and chronic GVHD; hematologic recovery; donor-cell engraftment; primary and secondary graft failure; overall incidence of toxicity; and cumulative incidence of infections including cytomegalovirus re-activation and symptomatic BK virus hemorrhagic cystitis. Exploratory endpoints are systemic immunosuppression-free survival; immune reconstitution at Days 28, 100, and 365 post haploBMT; proportion of patients with detectable minimal residual disease at Days 28 and 100 post haploBMT; feasibility of administering the planned CSTD002 doses; and impact of NK-cell alloreactivity on relapse and survival. Disclosures Vasu: Boehringer Ingelheim: Other: Travel support; Seattle Genetics: Other: Clinical trial support. Bejanyan:Kiadis Pharma: Other: advisory board. Devine:Kiadis Pharma: Other: Protocol development (via institution); Magenta Therapeutics: Other: Travel support for advisory board; My employer (National Marrow Donor Program) has equity interest in Magenta; Bristol Myers: Other: Grant for monitoring support & travel support. Krakow:Bellicum Pharmaceuticals: Research Funding; Highpass Bio: Research Funding; Magnolia Innovations: Other: Personal fees. Logan:Eisai: Other: Personal fees; Astellas: Other: Grant; Kiadis (formerly Cytosen): Other: Grant; Novartis: Other: Personal fees; Kite: Other: Grant. Luznik:Merck: Research Funding, Speakers Bureau; Genentech: Research Funding; AbbVie: Consultancy; WindMiL Therapeutics: Patents & Royalties: Patent holder. Barrett:Kiadis Pharma (formerly Cytosen): Other: Personal fees; Biologics Consulting Company: Other: Personal fees. Shan:Kiadis Pharma (formerly Cytosen): Employment. Champlin:Actinium: Consultancy; Johnson and Johnson: Consultancy; Sanofi-Genzyme: Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3714-3714 ◽  
Author(s):  
Lei Wu ◽  
Peter Schafer ◽  
George Muller ◽  
David Stirling ◽  
J. Blake Bartlett

Abstract Lenalidomide (Revlimid® is approved for the treatment of transfusion-dependent patients with anemia due to low- or intermediate-1-risk MDS associated with a del 5q cytogenetic abnormality with or without additional cytogenetic abnormalities, and in combination with dexamethasone is for the treatment of multiple myeloma patients who have received at least one prior therapy. Encouraging early results suggest a potential for clinical efficacy in B cell non-Hodgkin’s lymphoma (NHL). Potential mechanisms of action include anti-angiogenic, anti-proliferative and immunomodulatory activities. Lenalidomide has been shown to enhance Th1-type cytokines and T cell and NK cell activation markers in patients with advanced cancers. Furthermore, lenalidomide has been shown to enhance rituximab-mediated protection in a SCID mouse lymphoma model in vivo. We have utilized an in vitro ADCC system to assess the ability of lenalidomide to directly enhance human NK cell function in response to therapeutic antibodies, such as rituximab (chimeric anti-CD20 mAb). Isolated NK cells produced little or no IFN-γ in response to IgG and/or IL-2 or IL-12. However, pre-treatment of NK cells with lenalidomide greatly enhanced IFN-γ production by NK cells in a dose-dependent manner. In a functional ADCC assay, NHL cell lines (Namalwa, Farage & Raji) were pre-coated with rituximab and exposed to NK cells pre-treated with lenalidomide in the presence of either exogenous IL-2 or IL-12. After 4 hours in culture the viability of the tumor cells was assessed. Lenalidomide consistently and synergistically increased the killing of tumor cells in a dose-dependent manner and up to >4-fold compared to rituximab alone. Rituximab alone had only a small effect in this model and there was no killing of cells in the absence of rituximab. The presence of either exogenous IL-2 or IL-12 was required to see enhanced killing by lenalidomide. In cancer patients lenalidomide has been shown to increase serum IL-12 levels and is also known to induce IL-2 production by T cells in vitro. Potential mechanisms for enhanced ADCC include increased signaling through NK FCγ receptors and/or IL-2 or IL-12 receptors. However, we found that these receptors are unaffected by lenalidomide, although downstream effects on NK signaling pathways are likely and are being actively investigated. In conclusion, we have shown that lenalidomide strongly enhances the ability of rituximab to induce ADCC mediated killing of NHL cells in vitro. This provides a strong rationale for combination of these drugs in patients with NHL and CLL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1610-1610 ◽  
Author(s):  
Berengere Vire ◽  
Justin SA Perry ◽  
Elinor Lee ◽  
Lawrence S Stennett ◽  
Leigh Samsel ◽  
...  

Abstract Abstract 1610 Poster Board I-636 A major mechanism how the chimeric anti-CD20 monoclonal antibody rituximab (RTX) depletes B-cells is antibody-dependent cellular cytotoxicity (ADCC). ADCC has been modeled in-vitro and in mouse models. However, investigations on ADCC directly in patients treated with RTX are scarce. Recent efforts have focused on improving ADCC through modifications in the Fc binding portion of novel antibodies or through stimulation of effector cell functions with GM-CSF. A more detailed understanding of ADCC as a therapeutic process is needed to optimize such strategies and to identify biomarkers of improved efficacy. Here we report a comprehensive analysis of ADCC in previously untreated CLL patients during the first two RTX infusions (375mg/m2) given in combination with fludarabine every 4 weeks. Following the initial infusion of RTX the absolute lymphocyte count (ALC) decreased by a median of 74% at 2h, followed by a partial recrudescence of cells so that by 24h the median decrease in ALC reached 39% (n=11). ADCC is mediated by effector cells that include NK cells, monocytes/macrophages, and granulocytes. First, we investigated changes in NK cell function: consistent with NK cell activation we found an increase in CD69 at 2, 6 and up to 24h (median 4.2-fold, p=0.005, n=10) after RTX administration and increased expression of the degranulation marker CD107a/b (median 1.9-fold, p<0.001, n=5) and down-regulation of perforin expression (median decrease 63%, p<0.001, n=5) at 4h from treatment start. Activation of NK cells is triggered by the engagement of CD16/FcγRIIIa by RTX coated CLL cells. Interestingly, CD16 expression on NK cells was rapidly lost, already apparent at 2h and maximal at 6h from the start of the RTX infusion (median decrease 82%, p=0.02, n=10) and was not completely recovered by 24h. We also found a significant decrease in expression of CD16 on granulocytes (78%, p<0.001, n=5) but an increase in monocytes (3.9-fold, p<0.001, n=5). In addition to loss of CD16, we found that the cytotoxic capacity of the effector cells was rapidly exhausted: in an oxidative-burst assay, monocytes showed a significant decrease in the production of reactive oxygen species 4h after initiation of RTX infusion (median 60% decrease, p=0.043) and at 6h from the start of the RTX infusion NK cell-mediated killing of K562 target cells was reduced by half (p<0.001, n=3). Interestingly, both the acute reaction to RTX infusions that manifest as a cytokine release syndrome and changes in effector cell function peaked during the first hours of the RTX infusion. We hypothesized that this might be due to the process of CD20 shaving, a rapid and pronounced decrease of CD20 cell surface expression modeled in-vitro and in mice as the result of a mechanism called trogocytosis that relies on the direct and rapid exchange of cell membrane fragments and associated molecules between effectors and target cells (Beum, J Immunol, 2008). First, we used western blot analysis of total CD20 protein in CLL cells and found a rapid loss of CD20 that was apparent already at 2h resulting in virtually complete loss of expression at 24h. Next, we used ImageStream technology to directly visualize ADCC interactions in-vivo. We indeed detected transfer of CD20 from CLL cells to NK cells and monocytes, resulting in complete CD20 loss in circulating CLL cells. While we detected transfer of CD20 into both cell types, monocytes were much more engaged in trogocytosis than NK cells. Consistently, 4h post RTX infusion we found a significant increase in intracellular RTX in granulocytes and monocytes using intracellular staining for human IgG. CD20 shaving appears to be of particular importance given that immunohistochemical analyses revealed that persistent disease in the bone marrow aspirates after 4 cycles of RTX treatment was mostly CD20 negative. Collectively, our results identify loss of CD20 from CLL cells by trogocytosis and exhaustion of immune effector mechanisms as limitations for anti-CD20 immunotherapy. These data identify possible avenues for improving CD20 mediated immunotherapy and characterize endpoints on which different anti-CD20 antibodies can be compared. Given that trogocytosis appears to be a common occurrence our findings likely have general importance to immunotherapy of hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4511-4518 ◽  
Author(s):  
Katrina Soderquest ◽  
Nick Powell ◽  
Carmelo Luci ◽  
Nico van Rooijen ◽  
Andrés Hidalgo ◽  
...  

Abstract Natural killer (NK) cells play a major role in immunologic surveillance of cancer. Whether NK-cell subsets have specific roles during antitumor responses and what the signals are that drive their terminal maturation remain unclear. Using an in vivo model of tumor immunity, we show here that CD11bhiCD27low NK cells migrate to the tumor site to reject major histocompatibility complex class I negative tumors, a response that is severely impaired in Txb21−/− mice. The phenotypical analysis of Txb21-deficient mice shows that, in the absence of Txb21, NK-cell differentiation is arrested specifically at the CD11bhiCD27hi stage, resulting in the complete absence of terminally differentiated CD11bhiCD27low NK cells. Adoptive transfer experiments and radiation bone marrow chimera reveal that a Txb21+/+ environment rescues the CD11bhiCD27hi to CD11bhiCD27low transition of Txb21−/− NK cells. Furthermore, in vivo depletion of myeloid cells and in vitro coculture experiments demonstrate that spleen monocytes mediate the terminal differentiation of peripheral NK cells in a Txb21- and IL-15Rα–dependent manner. Together, these data reveal a novel, unrecognized role for Txb21 expression in monocytes in promoting NK-cell development and help appreciate how various NK-cell subsets are generated and participate in antitumor immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica M. Sierra ◽  
Florencia Secchiari ◽  
Sol Y. Nuñez ◽  
Ximena L. Raffo Iraolagoitia ◽  
Andrea Ziblat ◽  
...  

Natural Killer (NK) cells play a key role in cancer immunosurveillance. However, NK cells from cancer patients display an altered phenotype and impaired effector functions. In addition, evidence of a regulatory role for NK cells is emerging in diverse models of viral infection, transplantation, and autoimmunity. Here, we analyzed clear cell renal cell carcinoma (ccRCC) datasets from The Cancer Genome Atlas (TCGA) and observed that a higher expression of NK cell signature genes is associated with reduced survival. Analysis of fresh tumor samples from ccRCC patients unraveled the presence of a high frequency of tumor-infiltrating PD-L1+ NK cells, suggesting that these NK cells might exhibit immunoregulatory functions. In vitro, PD-L1 expression was induced on NK cells from healthy donors (HD) upon direct tumor cell recognition through NKG2D and was further up-regulated by monocyte-derived IL-18. Moreover, in vitro generated PD-L1hi NK cells displayed an activated phenotype and enhanced effector functions compared to PD-L1- NK cells, but simultaneously, they directly inhibited CD8+ T cell proliferation in a PD-L1-dependent manner. Our results suggest that tumors might drive the development of PD-L1-expressing NK cells that acquire immunoregulatory functions in humans. Hence, rational manipulation of these regulatory cells emerges as a possibility that may lead to improved anti-tumor immunity in cancer patients.


2021 ◽  
Author(s):  
Tayla M. Olsen ◽  
Wei Hong Tan ◽  
Arne C. Knudsen ◽  
Anthony Rongvaux

AbstractRegulated cell death is essential for the maintenance of cellular and tissue homeostasis. In the hematopoietic system, genetic defects in apoptotic cell death generally produce the accumulation of immune cells, inflammation and autoimmunity. In contrast, we found that genetic deletion of caspases of the mitochondrial apoptosis pathway reduces natural killer (NK) cell numbers and makes NK cells functionally defective in vivo and in vitro. Caspase deficiency results in constitutive activation of a type I interferon (IFN) response, due to leakage of mitochondrial DNA and activation of the cGAS/STING pathway. The NK cell defect in caspase-deficient mice is independent of the type I IFN response, but the phenotype is partially rescued by cGAS or STING deficiency. Finally, caspase deficiency alters NK cells in a cell-extrinsic manner. Type I IFNs and NK cells are two essential effectors of antiviral immunity, and our results demonstrate that they are both regulated in a caspase-dependent manner. Beyond caspase-deficient animals, our observations may have implications in infections that trigger mitochondrial stress and caspase-dependent cell death.


Blood ◽  
2011 ◽  
Vol 118 (10) ◽  
pp. 2793-2800 ◽  
Author(s):  
Aijun Liao ◽  
Kathleen Broeg ◽  
Todd Fox ◽  
Su-Fern Tan ◽  
Rebecca Watters ◽  
...  

Abstract NK-cell leukemia is a clonal expansion of NK cells. The illness can occur in an aggressive or chronic form. We studied cell lines from human and rat NK-cell leukemias (aggressive NK-cell leukemia) as well as samples from patients with chronic NK-cell leukemia to investigate pathogenic mechanisms. Here we report that Mcl-1 was overexpressed in leukemic NK cells and that knockdown of Mcl-1 induced apoptosis in these leukemic cells. In vitro treatment of human and rat NK leukemia cells with FTY720 led to caspase-dependent apoptosis and decreased Mcl-1 expression in a time- and-dose-dependent manner. These biologic effects could be inhibited by blockade of reactive oxygen species generation and the lysosomal degradation pathway. Lipidomic analyses after FTY720 treatment demonstrated elevated levels of sphingosine, which mediated apoptosis of leukemic NK cells in vitro. Importantly, systemic administration of FTY720 induced complete remission in the syngeneic Fischer rat model of NK-cell leukemia. Therapeutic efficacy was associated with decreased expression of Mcl-1 in vivo. These data demonstrate that therapeutic benefit of FTY720 may result from both altered sphingolipid metabolism as well as enhanced degradation of a key component of survival signaling.


2021 ◽  
Vol 22 (8) ◽  
pp. 3879
Author(s):  
Latiffa Amniai ◽  
Coline Ple ◽  
Mathieu Barrier ◽  
Patricia de Nadai ◽  
Philippe Marquillies ◽  
...  

Natural killer (NK) cells were originally described as cytolytic effector cells, but since then have been recognized to possess regulatory functions on immune responses. Chemokines locate NK cells throughout the body in homeostatic and pathological conditions. They may also directly stimulate immune cells. CCL18 is a constitutive and inducible chemokine involved in allergic diseases. The aim of this study was to evaluate CCL18’s effect on NK cells from allergic and nonallergic donors in terms of both chemotactic and immune effects. Results showed that CCL18 was able to induce migration of NK cells from nonallergic donors in a G-protein-dependent manner, suggesting the involvement of a classical chemokine receptor from the family of seven-transmembrane domain G-protein-coupled receptors. In contrast, NK cells from allergic patients were unresponsive. Similarly, CCL18 was able to induce NK cell cytotoxicity only in nonallergic subjects. Purified NK cells did not express CCR8, one of the receptors described to be involved in CCL18 functions. Finally, the defect in CCL18 response by NK cells from allergic patients was unrelated to a defect in CCL18 binding to NK cells. Overall, our results suggest that some NK cell functions may be defective in allergic diseases.


Sign in / Sign up

Export Citation Format

Share Document