scholarly journals Antifungal Properties and Target Evaluation of Three Putative Bacterial Histidine Kinase Inhibitors

1999 ◽  
Vol 43 (7) ◽  
pp. 1700-1703 ◽  
Author(s):  
Robert J. Deschenes ◽  
Hong Lin ◽  
Addison D. Ault ◽  
Jan S. Fassler

ABSTRACT Histidine protein kinases have been explored as potential antibacterial drug targets. The recent identification of two-component histidine kinases in fungi has led us to investigate the antifungal properties of three bacterial histidine kinase inhibitors (RWJ-49815, RWJ-49968, and RWJ-61907). All three compounds were found to inhibit growth of the Saccharomyces cerevisiae and Candida albicans strains, with MICs ranging from 1 to 20 μg/ml. However, deletion of SLN1, the only histidine kinase inS. cerevisiae, did not alter drug efficacy. In vitro kinase assays were performed by using the Sln1 histidine kinase purified from bacteria as a fusion protein to glutathione S-transferase. RWJ-49815 and RWJ-49968 inhibited kinase a 50% inhibitory concentration of 10 μM, whereas RWJ-61907 failed to inhibit at concentrations up to 100 μM. Based on these results, we conclude that these compounds have antifungal properties; however, their mode of action appears to be independent of histidine kinase inhibition.

2011 ◽  
Vol 55 (4) ◽  
pp. 1475-1484 ◽  
Author(s):  
Yoko Eguchi ◽  
Norihiro Kubo ◽  
Hiroko Matsunaga ◽  
Masayuki Igarashi ◽  
Ryutaro Utsumi

ABSTRACTTwo-component signal transduction systems (TCSs) in prokaryotes often regulate gene clusters that induce pathogenicity, and thus they have frequently been proposed as potential drug targets for attenuating the virulence of pathogens. The pathogenic potential ofStreptococcus mutans, the major etiological pathogen of dental caries, is also regulated by its TCSs. The object of this study was to evaluate the effect of a histidine kinase (HK) inhibitor against two major virulence factors ofS. mutans: biofilm formation and acid tolerance. Walkmycin C (WKM C), an HK inhibitor isolated from the screening of inhibitors against WalK HK inBacillus subtilis, inhibited thein vitroautophosphorylation activity of three purifiedS. mutansHKs, i.e., VicK, CiaH, and LiaS. AlthoughS. mutansdoes not have any essential HK but only an essential response regulator, VicR, WKM C showed an MIC of 6.25 μg/ml. This inhibitory effect of WKM C suggests that blocking the autophosphorylation of multiple HKs may inhibit phosphotransfer to VicR from VicK and other HKs. When WKM C was added at sub-MIC levels, the cells formed abnormal biofilms and also showed a defect in competence. When the cells were pretreated with WKM C, an increase in acid sensitivity was observed. Our results show that WKM C represses two pathogenic phenotypes ofS. mutans, indicating the possibility of developing histidine kinase inhibitors into antivirulence drugs.


2021 ◽  
Author(s):  
◽  
Sandi Grainne Dempsey

<p>The growing number of drug resistant strains of Mycobacterium tuberculosis appearing worldwide has had an enormous impact on the ability to control and treat Tuberculosis (TB). Discovering new anti-TB drugs is of paramount importance to the global effort for TB eradication. The success of the pathogen is largely due to its inherent ability to remain in a non-replicating or latent state for extended periods of time. In order to achieve this shift it requires tightly controlled signal transduction mechanisms to respond to its host environment. Two component systems (TCS) are one example of signalling mechanisms employed by prokaryotes and are ideal candidates for antibacterial drug targets. It is understood that many TCS are conserved in a large number of organisms, they are often essential to the virulence and persistence of pathogens and they are virtually exclusive to prokaryotes. In this study three Mycobacterium smegmatis TCS were selected; DevS/DevR, MtrB/MtrA and SenX3/RegX3. Promoters under the control of these systems were cloned into an optimised mycobacterial high copy number GFP reporter plasmid and subject to a number of in vitro stress conditions to ascertain induction conditions for these systems. As expected the DevS/DevR controlled hspX promoter was responsive to oxygen starvation and the SenX3/RegX3 controlled phoA was induced by phosphate starvation. Interestingly, phoA and mtrA were also induced by magnesium chelator EDTA in minimal media. The phoA and mtrA promoter constructs were then used for in vitro high throughput bioassays with a number of compound libraries in order to screen for any inhibitory activity on each of the target systems. A phosphorylation inhibitor included in one of the screens, oleic acid, indicated that this assay could potentially be used to screen for TCS inhibitors, but no novel compounds were found in this study. As a proof of principle, known TCS inhibitors palmitoleic and oleic acid were employed to show a dose dependent inhibition mtrA expression. This method could potentially be expanded to other TCS of Mycobacterium smegmatis and Mycobacterium bovis BCG, or other signal transduction systems such as one component regulators and serine threonine kinases.</p>


2021 ◽  
Author(s):  
◽  
Sandi Grainne Dempsey

<p>The growing number of drug resistant strains of Mycobacterium tuberculosis appearing worldwide has had an enormous impact on the ability to control and treat Tuberculosis (TB). Discovering new anti-TB drugs is of paramount importance to the global effort for TB eradication. The success of the pathogen is largely due to its inherent ability to remain in a non-replicating or latent state for extended periods of time. In order to achieve this shift it requires tightly controlled signal transduction mechanisms to respond to its host environment. Two component systems (TCS) are one example of signalling mechanisms employed by prokaryotes and are ideal candidates for antibacterial drug targets. It is understood that many TCS are conserved in a large number of organisms, they are often essential to the virulence and persistence of pathogens and they are virtually exclusive to prokaryotes. In this study three Mycobacterium smegmatis TCS were selected; DevS/DevR, MtrB/MtrA and SenX3/RegX3. Promoters under the control of these systems were cloned into an optimised mycobacterial high copy number GFP reporter plasmid and subject to a number of in vitro stress conditions to ascertain induction conditions for these systems. As expected the DevS/DevR controlled hspX promoter was responsive to oxygen starvation and the SenX3/RegX3 controlled phoA was induced by phosphate starvation. Interestingly, phoA and mtrA were also induced by magnesium chelator EDTA in minimal media. The phoA and mtrA promoter constructs were then used for in vitro high throughput bioassays with a number of compound libraries in order to screen for any inhibitory activity on each of the target systems. A phosphorylation inhibitor included in one of the screens, oleic acid, indicated that this assay could potentially be used to screen for TCS inhibitors, but no novel compounds were found in this study. As a proof of principle, known TCS inhibitors palmitoleic and oleic acid were employed to show a dose dependent inhibition mtrA expression. This method could potentially be expanded to other TCS of Mycobacterium smegmatis and Mycobacterium bovis BCG, or other signal transduction systems such as one component regulators and serine threonine kinases.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


Author(s):  
Mujeeb Rahman ◽  
Ping Wang ◽  
Na Wang ◽  
Yaodong Chen

The number of multidrug-resistant bacterial strains is currently increasing; thus, the determination of drug targets for the development of novel antimicrobial drugs is urgently needed. FtsZ, the prokaryotic homolog of the eukaryotic tubulin, is a GTP-dependent prokaryotic cytoskeletal protein that is conserved among most bacterial strains. In vitro studies revealed that FtsZ self-assembles into dynamic protofilaments or bundles, and it forms a dynamic Z-ring at the center of the cell, leading to septation and consequent cell division. The potential role of FtsZ in the blockage of cell division makes FtsZ a highly attractive target for developing novel antibiotics. Researchers have been working on synthetic molecules and natural products as inhibitors of FtsZ. Accumulating data suggest that FtsZ may provide the platform for the development of novel antibiotics. In this review, we summarize recent advances on the properties of FtsZ protein and bacterial cell division, as well as on the development of FtsZ inhibitors.


2005 ◽  
Vol 390 (3) ◽  
pp. 769-776 ◽  
Author(s):  
Sarah Sanowar ◽  
Hervé Le Moual

Two-component signal-transduction systems are widespread in bacteria. They are usually composed of a transmembrane histidine kinase sensor and a cytoplasmic response regulator. The PhoP/PhoQ two-component system of Salmonella typhimurium contributes to virulence by co-ordinating the adaptation to low concentrations of environmental Mg2+. Limiting concentrations of extracellular Mg2+ activate the PhoP/PhoQ phosphorylation cascade modulating the transcription of PhoP-regulated genes. In contrast, high concentrations of extracellular Mg2+ stimulate the dephosphorylation of the response regulator PhoP by the PhoQ kinase sensor. In the present study, we report the purification and functional reconstitution of PhoQHis, a PhoQ variant with a C-terminal His tag, into Escherichia coli liposomes. The functionality of PhoQHis was essentially similar to that of PhoQ as shown in vivo and in vitro. Purified PhoQHis was inserted into liposomes in a unidirectional orientation, with the sensory domain facing the lumen and the catalytic domain facing the extraluminal environment. Reconstituted PhoQHis exhibited all the catalytic activities that have been described for histidine kinase sensors. Reconstituted PhoQHis was capable of autokinase activity when incubated in the presence of Mg2+-ATP. The phosphoryl group could be transferred from reconstituted PhoQHis to PhoP. Reconstituted PhoQHis catalysed the dephosphorylation of phospho-PhoP and this activity was stimulated by the addition of extraluminal ADP.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Gaurav D. Sankhe ◽  
Narendra M. Dixit ◽  
Deepak K. Saini

ABSTRACT Two-component signaling systems (TCSs) are central to bacterial adaptation. However, the mechanisms underlying the reactions involving TCS proteins and their reaction rates are largely undetermined. Here, we employed a combined experimental and theoretical approach to elucidate the kinetics of autophosphorylation of three histidine kinases (HKs) of Mycobacterium tuberculosis , viz. , MtrB, PrrB, and PhoR, all known to play a role in regulating its virulence. Using wild-type and mutant proteins, we performed dimerization assays, thermophoretic-affinity measurements, and competition-based phosphorylation assays to establish that for HK, MtrB autophosphorylation occurs in cis , similar to what has been proposed for the PhoR and PrrB HKs. Next, to determine the kinetics of cis autophosphorylation, we used a quantitative high-throughput assay and identified a two-step mechanism of HK activation, involving (i) the reversible association of HK with ATP, followed by (ii) its phosphorylation. We developed a mathematical model based on this two-step cis mechanism that captured the experimental data. Best-fit parameter values yielded estimates of the extent of HK-ATP association and the rates of HK autophosphorylation, allowing quantification of the propensity of HK autophosphorylation. Our combined experimental and theoretical approach presents a facile, scalable tool to quantify reactions involving bacterial TCS proteins, useful in antibacterial drug development strategies. IMPORTANCE Two-component systems consisting of an input-sensing histidine kinase (HK) and an output-generating response regulator (RR) are one of the key apparatuses utilized by bacteria for adapting to the extracellular milieu. HK autophosphorylation is shown to occur primarily in trans (intermolecular) and more recently shown to occur in cis (intramolecular). Although the catalysis of HK activation remains universal, the reaction scheme for evaluation of the kinetic parameter differs between these designs and cis mode largely remains unexplored. We combined experimental and theoretical approach to unravel two-step mechanism of activation of three cis mode HKs of M. tuberculosis . The new mathematical model yields best-fit parameters to estimate the rates of HK-ATP association and HK autophosphorylation.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Shirin Parvazi ◽  
Sedigheh Sadeghi ◽  
Mehri Azadi ◽  
Maryam Mohammadi ◽  
Mohammad Arjmand ◽  
...  

Malaria is responsible for estimated 584,000 deaths in 2013. Researchers are working on new drugs and medicinal herbs due to drug resistance that is a major problem facing them; the search is on for new medicinal herbs. Cinnamon is the bark of a tree with reported antiparasitic effects. Metabonomics is the simultaneous study of all the metabolites in biological fluids, cells, and tissues detected by high throughput technology. It was decided to determine the mechanism of the effect of aqueous extract of cinnamon on the metabolome ofPlasmodium falciparum in vitrousing1HNMR spectroscopy. Prepared aqueous extract of cinnamon was added to a culture ofPlasmodium falciparum3D7 and its 50% inhibitory concentration determined, and, after collection, their metabolites were extracted and1HNMR spectroscopy by NOESY method was done. The spectra were analyzed by chemometric methods. The differentiating metabolites were identified using Human Metabolome Database and the metabolic cycles identified by Metaboanalyst. 50% inhibitory concentration of cinnamon onPlasmodium falciparumwas 1.25 mg/mL withp<0.001. The metabolites were identified as succinic acid, glutathione, L-aspartic acid, beta-alanine, and 2-methylbutyryl glycine. The main metabolic cycles detected were alanine and aspartame and glutamate pathway and pantothenate and coenzyme A biosynthesis and lysine biosynthesis and glutathione metabolism, which are all important as drug targets.


2000 ◽  
Vol 182 (8) ◽  
pp. 2068-2076 ◽  
Author(s):  
Dagmar Beier ◽  
Rainer Frank

ABSTRACT Two-component systems are frequently involved in the adaptation of bacteria to changing environmental conditions at the level of transcriptional regulation. Here we report the characterization of members of the two-component systems of the gastric pathogenHelicobacter pylori deduced from the genome sequence of strain 26695. We demonstrate that the response regulators HP166, HP1043, and HP1021 have essential functions, as disruption of the corresponding genes is lethal for the bacteria, irrespective of the fact that HP1043 and HP1021 have nonconserved substitutions in crucial amino acids of their receiver domains. An analysis of the in vitro phosphorylation properties of the two-component proteins demonstrates that HP244-HP703 and HP165-HP166 are cognate histidine kinase-response regulator pairs. Furthermore, we provide evidence that the variability of the histidine kinase HP165 caused by a poly(C) tract of variable length close to the 3′ end of open reading frame 165/164 does not interfere with the kinase activity of the transmitter domain of HP165.


2021 ◽  
Author(s):  
Nicole Frankenberg-Dinkel ◽  
Anne Sexauer

Signal transduction via two-component systems is a powerful tool for microorganisms to respond to environmental changes. Histidine kinases originating from Bacteria are the most common signaling enzymes and are also present in Archaea, but not in all phyla. A total of 124 bacterial-type histidine kinases and/or regulators were identified in a screen of 149 Euryarchaeota genomes, but little is known about the signal transfer and molecular regulation of these systems. In this work, the hybrid kinase MA4377 from the methanogenic archaeon Methanosarcina acetivorans was investigated. MA4377 is a multidomain protein resembling a bacterial-type histidine kinase with two additional receiver domains at the C-terminus. Recombinant protein was employed to investigate the intra- and intermolecular phosphorelay in vitro. The kinase displays autophosphorylation activity of histidine residue 497. While no intramolecular phosphorelay was observed, the CheY-like receiver protein MA4376 was identified as part of the multi-component system that also seems to include the Msr-type transcription factor MA4375. This study reveals the presence and in vitro function of a bacterial-type hybrid histidine kinase integrated into an archaeal phosphorelay system.


Sign in / Sign up

Export Citation Format

Share Document