scholarly journals Large Drug Resistance Virulence Plasmids of Clinical Isolates of Salmonella enterica Serovar Choleraesuis

2001 ◽  
Vol 45 (8) ◽  
pp. 2299-2303 ◽  
Author(s):  
Chishih Chu ◽  
Cheng-Hsun Chiu ◽  
Wan-Yu Wu ◽  
Chi-Hong Chu ◽  
Tsui-Ping Liu ◽  
...  

ABSTRACT Salmonella enterica serovar Choleraesuis generally causes systemic human salmonellosis without diarrhea, and therefore, antimicrobial treatment is essential for such patients. The drug resistance information on this organism is thus of high value. Serovar Choleraesuis usually harbors a virulence plasmid (pSCV) of 50 kb in size. Of the 16 clinical isolates identified to be serovar Choleraesuis, all except one harbored a pSCV and seven of them carried a pSCV of more than 125 kb in size. A pSCV was defined as a plasmid carrying spvC and characteristic deletions detected by PCR and by DNA-DNA hybridization (for the former criterion). The results of PCR, restriction fragment profiles, and Southern DNA-DNA hybridizations of the profiles all indicated that such larger pSCVs were derived from the 50-kb plasmid recombined with non-pSCVs found in some clinical isolates. Fifteen of the 17 strains, including a laboratory strain, were then tested for drug resistance against 16 antibiotics with E-test and the dilution method. The laboratory strain, which harbored a 50-kb pSCV and a 6-kb non-pSCV, was resistant only to sulfonamides (SUL), and its resistance gene, sulII, checked with PCR and DNA-DNA hybridization, was located on the 6-kb non-pSCV. All 14 clinical strains were resistant to multiple drugs. Of the 14, 7 were resistant to SUL, and the resistance gene was located on a plasmid. ThesulII gene, but not bla TEM-1, was carried only on the 6-kb non-pSCV. Of the remaining six large plasmids, three of 90 kb, two of 136 kb, and one of 140 kb, the last three were pSCVs and carried the other SUL gene (sulI) and thebla TEM-1 gene. The six strains were also resistant to trimethoprim-sulfamethoxazole. None of the 50-kb pSCVs carried resistance genes. These drug resistance genes on the large pSCVs were apparently also acquired through recombination.

2002 ◽  
Vol 46 (9) ◽  
pp. 2977-2981 ◽  
Author(s):  
Beatriz Guerra ◽  
Sara Soto ◽  
Reiner Helmuth ◽  
M. Carmen Mendoza

ABSTRACT An unusual self-transferable virulence-resistance plasmid (pUO-StVR2) was found in nine multidrug-resistant (ACSSuT phenotype) Salmonella enterica serotype Typhimurium clinical isolates that were assigned to four different phage types and a single and distinctive XbaI pulsed-field gel electrophoresis profile. pUO-StVR2 is an IncFII plasmid of about 140 kb in length carrying the spvA, spvB, and spvC (Salmonella plasmid virulence) and rck (resistance to complement killing) genes. It also carries the oxa1/aadA1a (ampicillin resistance and streptomycin-spectinomycin resistance) gene cassette configuration located within a class 1 integron with qacEΔ1/sul1 (ammonium antiseptics resistance and sulfadiazine resistance); the transposon genes merA, tnpA, and tnpR (mercury resistance, transposase, and resolvase of Tn21, respectively); and the catA1 (chloramphenicol resistance) and tet(B) (tetracycline resistance) genes. The insertion of resistance genes into a Salmonella virulence plasmid constitutes a new and interesting example of plasmid evolution and presents a serious public health problem.


2012 ◽  
Vol 78 (22) ◽  
pp. 8062-8066 ◽  
Author(s):  
Russell D. Hamilton ◽  
Holly J. Hulsebus ◽  
Samina Akbar ◽  
Jeffrey T. Gray

ABSTRACTSalmonellosis is one of the most common causes of food-borne disease in the United States. Increasing antimicrobial resistance and corresponding increases in virulence present serious challenges. Currently, empirical therapy for invasiveSalmonella entericainfection includes either ceftriaxone or ciprofloxacin (E. L. Hohmann, Clin. Infect. Dis. 32:263–269, 2001). TheblaCMY-2gene confers resistance to ceftriaxone, the antimicrobial of choice for pediatric patients with invasiveSalmonella entericainfections, making these infections especially dangerous (J. M. Whichard et al., Emerg. Infect. Dis. 11:1464–1466, 2005). We hypothesized thatblaCMY-2-positiveSalmonella entericawould exhibit increased MICs to multiple antimicrobial agents and increased resistance gene expression following exposure to ceftriaxone using a protocol that simulated a patient treatmentin vitro. SevenSalmonella entericastrains survived a simulated patient treatmentin vitroand, following treatment, exhibited a significantly increased ceftriaxone MIC. Not only would these isolates be less responsive to further ceftriaxone treatment, but because theblaCMY-2genes are commonly located on large, multidrug-resistant plasmids, increased expression of theblaCMY-2gene may be associated with increased expression of other drug resistance genes located on the plasmid (N. D. Hanson and C. C. Sanders, Curr. Pharm. Des. 5:881–894, 1999). The results of this study demonstrate that a simulated patient treatment with ceftriaxone can alter the expression of antimicrobial resistance genes, includingblaCMY-2andfloRinS. entericaserovar Typhimurium andS. entericaserovar Newport. Additionally, we have shown increased MICs following a simulated patient treatment with ceftriaxone for tetracycline, amikacin, ceftriaxone, and cefepime, all of which have resistance genes commonly located on CMY-2 plasmids. The increases in resistance observed are significant and may have a negative impact on both public health and antimicrobial resistance ofSalmonella enterica.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Geneviève Labbé ◽  
Kim Ziebell ◽  
Sadjia Bekal ◽  
Kimberley A. Macdonald ◽  
E. Jane Parmley ◽  
...  

Salmonella enterica subsp. enterica serovar Heidelberg is a highly clonal serovar frequently associated with foodborne illness. To facilitate subtyping efforts, we report fully assembled genome sequences of 17 Canadian S . Heidelberg isolates including six pairs of epidemiologically related strains. The plasmid sequences of eight isolates contain several drug resistance genes.


2000 ◽  
Vol 44 (2) ◽  
pp. 421-424 ◽  
Author(s):  
Kathleen Keyes ◽  
Charlene Hudson ◽  
John J. Maurer ◽  
Stephan Thayer ◽  
David G. White ◽  
...  

ABSTRACT Florfenicol is an antibiotic approved for veterinary use in cattle in the United States in 1996. Although this drug is not used in poultry, we have detected resistance to florfenicol in clinical isolates of avian Escherichia coli. Molecular typing demonstrated that the florfenicol resistance gene, flo, was independently acquired and is plasmid encoded.


2006 ◽  
Vol 7 (7) ◽  
pp. 849-860 ◽  
Author(s):  
Teresa Quinn ◽  
Rebecca O'Mahony ◽  
Alan Baird ◽  
Denise Drudy ◽  
Paul Whyte ◽  
...  

Author(s):  
Sabiha S. Salih ◽  
Shno J. Mohammed ◽  
Imad M Noori ◽  
Lana MA Mohammed ◽  
Taib A. Hama Soor

Existing of drug resistance bacteria in meat is a series of health concern and beta-lactamase is responsible to generate multi drug resistances in bacteria. Meat is a source of delivering food born pathogen bacteria including Proteus species. Recently Proteus bacteria developed drug resistance against many antimicrobial drugs and it causes difficulty in patient’s treatment. Hence its important to indicate the rate of Proteus species, P. mirabilis and P. Vulgaris, in the meat of different animals and to find the prevalence of b-lactamase resistance genes (blaTEM-1, blaCMY, blaCMY2, blaShv, blaOXA, and blaCTX) in Proteus species. Molecular identification of Proteus bacteria was confirmed by PCR amplification of part of 16S rRNA using Proteus specific set of primers.  70 meat samples (cattle, sheep, chicken, turkey, goat, and fish) were collected in local meat shops in the center of Sulaimani city. 29 (41.4%) samples were positive to Proteus species and 22 (75.87%) isolates were P. mirabilis and seven (24.13%) were P. vulgaris based on conventional biochemical tests. The drug sensitivity test was performed for all isolates using a disk diffusion assay (Kirby Bauer test). The multidrug resistance was found in all isolates and the most common drug resistance phenotype were against tetracycline, rifampin, and doxycycline, while the imepenem, tobramycin, and meropenem remain more effective against the bacteria. Resistance genes, blaTEM-1, and blaShv were found in five isolates (17.2%) of Proteus.   Three isolates (10.3%) were positive to blaTEM-1 resistance gene and two isolates (6.8%) were positive to blaShv. All resistance genes recorded in this study were recovered in P. mirabilis and none of them was reported in p. vulgaris. None of the isolates was positive to beta-lactamase genes, blaCMY, blaCMY2, blaOXA, and blaCTX.


2015 ◽  
Vol 21 (2) ◽  
pp. 167-170 ◽  
Author(s):  
Zhongju Chen ◽  
Yue Wang ◽  
Lei Tian ◽  
Xuhui Zhu ◽  
Li Li ◽  
...  

2015 ◽  
Vol 23 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Nermin H. Ibrahim ◽  
Nahla A. Melake ◽  
Ali M. Somily ◽  
Azza S. Zakaria ◽  
Manal M. Baddour ◽  
...  

2021 ◽  
Author(s):  
Farzad Khademi ◽  
Shahram Habibzadeh ◽  
Hamid Vaez ◽  
Mohsen Arzanlou ◽  
Somayeh Safarirad ◽  
...  

Abstract Background: Biocides are frequently used as preservative, disinfectant and sterilizer against many microorganisms in hospitals, industry and home. However, the resistance rate of Pseudomonas aeruginosa (P. aeruginosa) strains to biocides is increasing. The aim of this study was to evaluate the antimicrobial activity of four frequently used biocides against P. aeruginosa and to determine the prevalence of genes involved in biocide resistance. Methods: A total of 76 clinical isolates of P. aeruginosa strains were used in the present study. The minimum inhibitory concentrations (MICs) of four biocides, i.e. chlorhexidine digluconate, benzalkonium chloride, triclosan and formaldehyde, against P. aeruginosa strains were determined using agar dilution method. In addition, the prevalence of biocide resistance genes was determined using the polymerase chain reaction (PCR) method.Results: In the present study, the highest MIC90 value was observed for benzalkonium chloride (MIC90=1024 μg/mL), followed by formaldehyde (MIC90=512 μg/mL), triclosan (MIC90=512 μg/mL) and chlorhexidine digluconate (MIC90=64 μg/mL). Furthermore, the prevalence of qacEΔ1, qacE, qacG, fabV, cepA and fabI genes were 73.7% (n=56), 26.3% (n=20), 11.8% (n=9), 84.2% (n=64), 81.5% (n=62) and 0% (n=0), respectively. A significant association was observed between the presence of biocide resistance genes and MICs (p<0.05). Furthermore, there was no significant association between the presence of biocide resistance genes and antibiotic resistance (p>0.05), except for levofloxacin and norfloxacin antibiotics and qacE and qacG genes (p<0.05). Conclusion: Our results revealed that chlorhexidine digluconate is the most effective biocide against P. aeruginosa isolates in Ardabil hospitals. However, we recommend continuous monitoring of the antimicrobial activity of biocides and the prevalence of biocide-associated resistance genes for a better prevention of microorganism dissemination and infection control in hospitals.


2018 ◽  
Vol 46 (1) ◽  
pp. 9
Author(s):  
Jia-San Zheng ◽  
Ting-Ting Zhu ◽  
Yun Liu ◽  
Ting Liu ◽  
Yan-Qing Li ◽  
...  

Background: To explore the epidemiology of bovine multidrug-resistant Escherichia coli isolates and resistance genes in Heilongjiang province of China. This study examined the prevalence of genes in bovine E. coli isolates, which confer resistance to antibiotics that are commonly used in the clinic, in regions of Baiquan, Shangzhi, and Songbei of Harbin. The purpose of the study was to investigate the epidemiology of the main resistance genes of bovine E. coli isolates in clinical veterinary medicine, and to provide a theoretical basis for preventing the spread of drug-resistant bacteria, as well as for rational drug use.Materials, Methods & Results: The sensitivity of 105 isolates to 22 antibiotics was determined using the KirbyBauer disk diffusion method, and the distribution of 19 kinds of common drug resistance genes was investigated using Polymerase Chain Reaction. The results showed that the resistance rate to nine antibiotics was over 50%, including rifampin (84.76%), ampicillin (73.58%), tetracycline (69.52%), and sulfisoxazole (59.05%). In total, 105 strains of bovine E. coli presented 21 spectra of drug resistance, including eight strains (7.62%, 8/105) that were resistant to one antibiotic and four strains (3.81%, 4/105) that were resistant to 21 antibiotics. The resistance gene detection results showed that the streptomycin-resistance gene strA was found in 73 isolates, accounting for 69.52% of the isolates, followed by the sulfanilamide-resistance genes sul3/sul2 and the aminoglycoside-resistance gene aphA, which accounted for 57.14%, 51.43%, and 50.48%, respectively, of the isolates.Discussion: This study revealed serious drug resistance of bovine E. coli isolates in some areas of Heilongjiang province. Of 105 E. coli isolates, more than 50% were resistant to the following antibacterial drugs: rifampicin, ampicillin, tetracycline, sulfisoxazole, and cephalothin. The isolates were the most sensitive to amikacin, with a sensitivity of 84.76%, followed by sensitivity to ofloxacin, ciprofloxacin, norfloxacin, cefoxitin, and tobramycin. Drug sensitivity tests showed that the drug resistance spectra of the bovine E. coli isolates was different in different regions, indicating that there were multidrug-resistant bovine E. coli isolates in different regions of Heilongjiang province, and that drug resistance differed among different regions. This may be due to prolonged use or overuse of antibiotics in a particular locality. Additionally, because of different management modes of livestock farms, the application of antimicrobial drugs in some farms may have imposed selective pressure on the intestinal flora including E. coli, resulting in the horizontal transmission of drug resistance among the bacteria. The study found that some strains had a resistance phenotype, but no resistance gene, while some had a resistance gene without expressing a resistance phenotype, which is consistent with relevant reports in the literature. This may be related to the same genotype corresponding to different resistance phenotypes, or different levels of gene expression, or different drug metabolic rates. In our study, some strains with certain drug resistance genes were sensitive to the corresponding drug, which may be due to mutations of drug-resistance genes, the loss of a strains resistance phenotype, or the loss of gene function. These issues require further study. This study revealed serious drug resistance of bovine E. coli isolates in some areas of Heilongjiang province. Of 105 E. coli isolates, more than 50% were resistant to the following antibacterial drugs: rifampicin, ampicillin, tetracycline, sulfisoxazole, and cephalothin. The isolates were the most sensitive to amikacin, with a sensitivity of 84.76%, followed by sensitivity to ofloxacin, ciprofloxacin, norfloxacin, cefoxitin, and tobramycin.


Sign in / Sign up

Export Citation Format

Share Document