scholarly journals Antibiofilm Activity of GlmU Enzyme Inhibitors against Catheter-Associated Uropathogens

2006 ◽  
Vol 50 (5) ◽  
pp. 1835-1840 ◽  
Author(s):  
Euan Burton ◽  
Purushottam V. Gawande ◽  
Nandadeva Yakandawala ◽  
Karen LoVetri ◽  
George G. Zhanel ◽  
...  

ABSTRACT The colonization of uropathogenic bacteria on urinary catheters resulting in biofilm formation frequently leads to the infection of surrounding tissue and often requires removal of the catheter. Infections associated with biofilms are difficult to treat since they may be more than 1,000 times more resistant to antibiotics than their planktonic counterparts. We have developed an antibiofilm composition comprising an N-acetyl-d-glucosamine-1-phosphate acetyltransferase (GlmU) inhibitor and protamine sulfate, a cationic polypeptide. The antibiofilm activity of GlmU inhibitors, such as iodoacetamide (IDA), N-ethyl maleimide (NEM), and NEM analogs, including N-phenyl maleimide, N,N′-(1,2-phenylene)dimaleimide (oPDM), and N-(1-pyrenyl)maleimide (PyrM), was tested against that of catheter-associated uropathogens. Both IDA and NEM inhibited biofilm formation in Escherichia coli. All NEM analogs showed antibiofilm activity against clinical isolates of E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus epidermidis, and Enterococcus faecalis. The combination of oPDM with protamine sulfate (PS) enhanced its antibiofilm activity and reduced its effective concentration to as low as 12.5 μM. In addition, we found that the in vitro inhibitory activity of oPDM-plus-PS-coated silicone catheters against P. aeruginosa and S. epidermidis colonization was superior to that of catheters coated with silver hydrogel. Confocal scanning laser microscopy further confirmed that the oPDM-plus-PS-coated silicone catheters were almost free from bacterial colonization. Thus, a broad-spectrum antibiofilm composition comprising a GlmU inhibitor and protamine sulfate shows promise for use in anti-infective coatings for medical devices, including urinary catheters.

2007 ◽  
Vol 75 (8) ◽  
pp. 3715-3721 ◽  
Author(s):  
J. Andy Schaber ◽  
W. Jeffrey Triffo ◽  
Sang Jin Suh ◽  
Jeffrey W. Oliver ◽  
Mary Catherine Hastert ◽  
...  

ABSTRACT Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 h of infection in thermally injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections as well. Using light, electron, and confocal scanning laser microscopy, P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild-type and QS-deficient P. aeruginosa strains formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independently of QS.


2018 ◽  
Vol 12 (02.1) ◽  
pp. 8S
Author(s):  
Sari S Rasheed ◽  
Kohar Annie Kissoyan ◽  
Usamah Hadi ◽  
Marwan El-Sabban ◽  
Ghassan M Matar

Introduction: 1,3-β-D-glucan of the fungal cell wall and extracellular matrix (ECM) of Candida biofilm is also present as a periplasmic glucan and within the ECM of P. aeruginosa biofilm. Micafungin inhibits the synthesis of β-D-glucans. This project evaluates the effect of micafungin on P. aeruginosa biofilm formation, by determining transcription levels of biofilm formation encoding genes and measuring the thickness of biofilms in treated and untreated samples from BALB/c mice. Methodology: Rrelative gene transcription levels of P. aeruginosa biofilm-encoding pelC, algC, and ndvB genes were assessed by RT-qPCR on treated and untreated samples. Thickness calculation by Z-stacking of treated and untreated biofilms obtained from in vitro and in vivo samples was determined by confocal scanning laser microscopy (CSLM). Results: Samples from micafungin-treated mice showed decreased pelC, ndvB, and algC transcription levels with values of 260, 74, and 2-fold decreases, respectively. Reduction in biofilms thickness was confirmed with Z-stacking using CSLM that revealed a 16.8% drop in the thickness of biofilms after treatment with micafungin in vitro, and a 64% reduction in thickness post treatment with micafungin in vivo. Conclusion: Micafungin inhibits biofilm formation as measured by decrease in transcription levels of biofilm encoding genes and confocal microscopy. This reflects the events occurring in the course of an acute infection with P. aeruginosa, whereby the administration of micafungin would inhibit subsequent slime production, thus eliminating such barrier that could prevent antibacterial delivery to the core planktonic cells in biofilms. Introduction: 1,3-β-D-glucan of the fungal cell wall and extracellular matrix (ECM) of Candida biofilm is also present as a periplasmic glucan and within the ECM of P. aeruginosa biofilm. Micafungin inhibits the synthesis of β-D-glucans. This project evaluates the effect of micafungin on P. aeruginosa biofilm formation, by determining transcription levels of biofilm formation encoding genes and measuring the thickness of biofilms in treated and untreated samples from BALB/c mice. Methodology: Rrelative gene transcription levels of P. aeruginosa biofilm-encoding pelC, algC, and ndvB genes were assessed by RT-qPCR on treated and untreated samples. Thickness calculation by Z-stacking of treated and untreated biofilms obtained from in vitro and in vivo samples was determined by confocal scanning laser microscopy (CSLM). Results: Samples from micafungin-treated mice showed decreased pelC, ndvB, and algC transcription levels with values of 260, 74, and 2-fold decreases, respectively. Reduction in biofilms thickness was confirmed with Z-stacking using CSLM that revealed a 16.8% drop in the thickness of biofilms after treatment with micafungin in vitro, and a 64% reduction in thickness post treatment with micafungin in vivo. Conclusion: Micafungin inhibits biofilm formation as measured by decrease in transcription levels of biofilm encoding genes and confocal microscopy. This reflects the events occurring in the course of an acute infection with P. aeruginosa, whereby the administration of micafungin would inhibit subsequent slime production, thus eliminating such barrier that could prevent antibacterial delivery to the core planktonic cells in biofilms.


2021 ◽  
pp. 088532822110511
Author(s):  
Youbin Li ◽  
Shaochuan Wang ◽  
Shidan Li ◽  
Jun Fei

Implant-related infection is a disastrous complication. Surface modification of titanium is considered as an important strategy to prevent implant-related infection. However, there is no recognized surface modification strategy that can be applied in clinic so far. We explored a new strategy of coating. The clindamycin-loaded titanium was constructed by layer-by-layer self-assembly. The release of clindamycin from titanium was detected through high performance liquid chromatography. Different titanium was co-cultured with Staphylococcus aureus for 24 h in vitro, then the effect of different titanium on bacterial colonization and biofilm formation was determined by spread plate method and scanning electron microscopy. Cytotoxicity and cytocompatibility of clindamycin-loaded titanium on MC3T3-E1 cells were measured by CCK8. The antibacterial ability of clindamycin-loaded titanium in vivo was also evaluated using a rat model of osteomyelitis. The number of osteoclasts in bone defect was observed by tartrate-resistant acid phosphatase staining. Bacterial burden of surrounding tissues around the site of infection was calculated by tissue homogenate and colony count. Clindamycin-loaded titanium could release clindamycin slowly within 160 h. It reduced bacterial colonization by three orders of magnitude compare to control ( p < .05) and inhibits biofilm formation in vitro. Cells proliferation and adhesion were similar on three titanium surfaces ( p > .05). In vivo, clindamycin-loaded titanium improved bone healing, reduced microbial burden, and decreased the number of osteoclasts compared control titanium in the rat model of osteomyelitis. This study demonstrated that clindamycin-loaded titanium exhibited good biocompatibility, and showed antibacterial activity both in vivo and in vitro. It is promising and might have potential for clinical application.


2002 ◽  
Vol 46 (11) ◽  
pp. 3591-3596 ◽  
Author(s):  
Stefano P. Bachmann ◽  
Kacy VandeWalle ◽  
Gordon Ramage ◽  
Thomas F. Patterson ◽  
Brian L. Wickes ◽  
...  

ABSTRACT Most manifestations of candidiasis are associated with biofilm formation on biological or inanimate surfaces. Candida albicans biofilms are recalcitrant to treatment with conventional antifungal therapies. Here we report on the activity of caspofungin, a new semisynthetic echinocandin, against C. albicans biofilms. Caspofungin displayed potent in vitro activity against sessile C. albicans cells within biofilms, with MICs at which 50% of the sessile cells were inhibited well within the drug's therapeutic range. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize the effects of caspofungin on preformed C. albicans biofilms, and the results indicated that caspofungin affected the cellular morphology and the metabolic status of cells within the biofilms. The coating of biomaterials with caspofungin had an inhibitory effect on subsequent biofilm development by C. albicans. Together these findings indicate that caspofungin displays potent activity against C. albicans biofilms in vitro and merits further investigation for the treatment of biofilm-associated infections.


Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 117 ◽  
Author(s):  
Federica Blando ◽  
Rossella Russo ◽  
Carmine Negro ◽  
Luigi De Bellis ◽  
Stefania Frassinetti

Plant extracts are a rich source of natural compounds with antimicrobial properties, which are able to prevent, at some extent, the growth of foodborne pathogens. The aim of this study was to investigate the potential of polyphenolic extracts from cladodes of Opuntia ficus-indica (L.) Mill. to inhibit the growth of some enterobacteria and the biofilm formation by Staphylococcus aureus. Opuntia ficus-indica cladodes at two stages of development were analysed for total phenolic content and antioxidant activity by Oxygen Radical Absorbance Capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) (in vitro assays) and by cellular antioxidant activity in red blood cells (CAA-RBC) (ex vivo assay). The Liquid Chromatography Time-of-Flight Mass Spectrometry (LC/MS–TOF) analysis of the polyphenolic extracts revealed high levels of piscidic acid, eucomic acid, isorhamnetin derivatives and rutin, particularly in the immature cladode extracts. Opuntia cladodes extracts showed a remarkable antioxidant activity (in vitro and ex vivo), a selective inhibition of the growth of Gram-positive bacteria, and an inhibition of Staphylococcus aureus biofilm formation. Our results suggest and confirm that Opuntia ficus-indica cladode extracts could be employed as functional food, due to the high polyphenolic content and antioxidant capacity, and used as natural additive for food process control and food safety.


2009 ◽  
Vol 53 (8) ◽  
pp. 3308-3316 ◽  
Author(s):  
Hiroyuki Wakabayashi ◽  
Koji Yamauchi ◽  
Tetsuo Kobayashi ◽  
Tomoko Yaeshima ◽  
Keiji Iwatsuki ◽  
...  

ABSTRACT Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with ≥130 μg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and ≥6 μg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. The biofilm formation of P. gingivalis and P. intermedia over 24 h was effectively inhibited by lower concentrations (≥8 μg/ml) of various iron-bound forms (the apo, native, and holo forms) of bLF and hLF but not LFcin B. A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases.


2018 ◽  
Vol 4 (1) ◽  
pp. 95-107
Author(s):  
Nasrin Esfahanizadeh ◽  
Mohammad Reza Nourani ◽  
Abbas Bahador ◽  
Nasrin Akhondi ◽  
Mostafa Montazeri

Abstract Colonization of periodontal pathogens on the surgical sites is one of the primary reasons for the failure of regenerative periodontal therapies. Bioactive glasses (BGs) owing to their favorable structural and antimicrobial properties have been proposed as promising materials for the reconstruction of periodontal and peri-implant bone defects. This study aimed to investigate the antibiofilm activity of zinc-doped BG (Zn/BG) compared with 45S5 Bioglass® (BG®) on putative periodontal pathogens. In this in vitro experimental study, the nano BG doped with 5-mol% zinc and BG® were synthesized by sol-gel method. Mono-species biofilms of Aggregatibacter actinomycetemcomitans (A. a), Porphyromonas gingivalis (P. g), and Prevotella intermedia (P. i)were prepared separately in a well-containing microplate. After 48 hours of exposure to generated materials at 37°C, the anti-biofilm potential of the samples was studied by measuring the optical density (OD) at 570nm wavelengths with a microplate reader. Two-way ANOVA then analyzed the results. Both Zn/BG and BG® significantly reduced the biofilm formation ability of all examined strains after 48 hours of incubation (P=0.0001). Moreover, the anti-biofilm activity of Zn/BG was significantly stronger than BG® (P=0.0001), which resulted in the formation of a weak biofilm (OD<1) compared with a moderately adhered biofilm observed with BG® (1<OD<2). Zn/BG showed a significant inhibitory effect on the biofilm formation of all examined periodontal pathogens. Given the enhanced regenerative and anti-biofilm properties of this novel biomaterial, further investigations are required for its implementation in clinical situations.


2010 ◽  
Vol 55 (2) ◽  
pp. 845-853 ◽  
Author(s):  
Rachna N. Dave ◽  
Hiren M. Joshi ◽  
Vayalam P. Venugopalan

ABSTRACTCatheters and other indwelling devices placed inside human body are prone to bacterial infection, causing serious risk to patients. Infections associated with implants are difficult to resolve, and hence the prevention of bacterial colonization of such surfaces is quite appropriate. In this context, the development of novel antimicrobial biomaterials is currently gaining momentum. We describe here the preparation and antibacterial properties of an enzyme-embedded polycaprolactone (PCL)-based coating, coimpregnated with the antibiotic gentamicin sulfate (GS). The enzyme uses PCL itself as substrate; as a result, the antibiotic gets released at a rate controlled by the degradation of the PCL base.In vitrodrug release studies demonstrated sustained release of GS from the PCL film throughout its lifetime. By modulating the enzyme concentration in the PCL film, we were able to vary the lifetime of the coating from 33 h to 16 days. In the end, the polymer is completely degraded, delivering the entire load of the antibiotic. The polymer exhibited antibacterial properties against three test isolates:Escherichia coli,Pseudomonas aeruginosa, andStaphylococcus aureus. Foley urinary catheters coated with the modified polymer exhibited sustainedin vitrorelease of GS over a 60-h period. The results suggest that the antibiotic-plus-enzyme-loaded polymer can be used as tunable self-degrading antimicrobial biomaterial coating on catheters.


2019 ◽  
Vol 1 (2) ◽  
pp. 49
Author(s):  
Jemima Pramadita ◽  
Armelia Sari Widyarman

Introduction: Pomegranate (Punica granatum) fruit contains valuable ingredients, such as ellagitannins and flavonoids, that have many potential effects, including antibacterial, antifungal, and anti-inflammatory functions. Objectives: The aim of this study was to investigate the effects of pomegranate fruit juice on F. nucleatum and S. sanguinis monospecies and multispecies biofilm formation in vitro. Methods: Pomegranate juice was obtained using a juicer and diluted using a brain heart infusion (BHI) broth into five different concentrations. The biofilm assay was performed as follows: F. nucleatum and S. sanguinis were cultured separately in the BHI broth for 48 hours at 37°C in an anaerobic atmosphere. A 200 mL bacterial suspension (107 CFU/mL) was distributed into a 96-well plate and incubated for 24 hours to form  a biofilm. Subsequently, pomegranate juice was added to the biofilm well and observed after 1 hours, 3 hours, 6 hours, and 24 hours. The biofilm mass was measured using a microplate reader (490 nm) after crystal violet staining. Chlorhexidine (0.2%) and the biofilms without treatment were used as the positive and negative controls, respectively. The data were statistically analyzed using one-way analysis of variance, with p<0.05 as the level of significance. Result: There was a significant biofilm reduction after treatment with pomegranate juice for all the concentrations and incubation times (p<0.05). The effective concentrations to inhibit the biofilm monospecies F. nucleatum and S. sanguinis and the multispecies were 6.25% (OD 0.148±0.019), 50% (OD 0.211±0.026), and 6.25% (OD 0.024±0.209), respectively. Conclusion: Pomegranate juice inhibits F. nucleatum and S. sanguinis biofilm formation as a monospecies and a multispecies. Future studies are needed to observe the mechanism of this active substance.


2022 ◽  
Author(s):  
Jesus Augusto Vazquez-Rodriguez ◽  
Bahaa Shaqour ◽  
Clara Guarch-Perez ◽  
Emilia Choinska ◽  
Martijn Riool ◽  
...  

Biomaterial-associated infections are a major healthcare challenge as they are responsible for high disease burden in critically ill patients. In this study, we have developed drug-eluting antibacterial catheters to prevent catheter-related infections. Niclosamide (NIC), originally a well-studied antiparasitic drug, was incorporated into the polymeric matrix of thermoplastic polyurethane (TPU) via solvent casting, and catheters were fabricated using hot-melt extrusion technology. The mechanical and physicochemical properties of TPU polymers loaded with NIC were studied. NIC was released in a sustained manner from the catheters and exhibited antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis in different in vitro models. Moreover, the antibacterial efficacy of NIC-loaded catheters was validated in an in vivo biomaterial-associated infection mouse model using a methicillin-susceptible and methicillin-resistant strain of S. aureus. The released NIC from the produced catheters reduced bacterial colonization of the catheter as well as of the surrounding tissue. A sustained in vivo release of NIC from the catheters for at least 14 days was observed. In summary, the NIC-releasing hot-melt extruded catheters prevented implant colonization and reduced the bacterial colonization of peri-catheter tissue by methicillin sensitive as well as resistant S. aureus in a biomaterial-associated infection mouse model and has good prospects for preclinical development.


Sign in / Sign up

Export Citation Format

Share Document