scholarly journals Effect of Host Cells on Low- and Medium-Pressure UV Inactivation of Adenoviruses

2010 ◽  
Vol 76 (21) ◽  
pp. 7068-7075 ◽  
Author(s):  
Huiling Guo ◽  
Xiaona Chu ◽  
Jiangyong Hu

ABSTRACT UV disinfection is highly effective against most pathogens, with the exception of the adenoviruses (AD). To date, many studies have focused on low-pressure (LP) UV inactivation of AD, but little is known about the effect of medium-pressure (MP) UV inactivation of AD. Despite numerous studies of LP UV inactivation of AD, extreme variabilities in the LP UV dose requirements of AD had been observed because of differing experimental conditions used, such as the types of cell lines used for AD enumeration. This study therefore investigates the effect of three different host cell lines (PLC/PRF/5, human embryonic kidney 293 [HEK293], and XP17BE) on the LP and MP UV dose requirements of AD serotype 5 (AD5), AD40, and AD41 under similar experimental settings. Results showed that for 4-log inactivation of AD, LP UV and MP UV doses needed to be in the ranges of 123 to 182 mJ/cm2 and 65 to 90 mJ/cm2, respectively, when HEK293 and PLC/PRF/5 cells were used for enumeration. The UV doses required for MP UV inactivation of AD were significantly lower than those required for LP UV inactivation (P value < 0.05). When different cell lines were used for enumeration, UV dose requirements for AD differed. AD were portrayed to be most susceptible to UV (LP UV doses of <57 mJ/cm2 and MP UV doses of <42 mJ/cm2 for 4-log AD inactivation) when the XP17BE cells were used as the host cell. The use of different cell lines for AD enumeration affected LP UV dose results more significantly than MP UV dose results (P value < 0.05). Cell line variability factors for LP UV disinfection (CLLP) and MP UV disinfection (CLMP) for AD5, AD40, and AD41 enumerated with HEK293, PLC/PRF/5, and XP17BE cells were in the ranges of 1.0 to 3.2 and 1.0 to 2.5, respectively.

2019 ◽  
Author(s):  
Meiyappan Lakshmanan ◽  
Yee Jiun Kok ◽  
Alison P. Lee ◽  
Sarantos Kyriakopoulos ◽  
Hsueh Lee Lim ◽  
...  

AbstractChinese hamster ovary (CHO) cells are the most prevalent mammalian cell factories for producing recombinant therapeutic proteins due to their ability to synthesize human-like post-translational modifications and ease of maintenance in suspension cultures. Currently, a wide variety of CHO host cell lines have been developed; substantial differences exist in their phenotypes even when transfected with the same target vector. However, relatively less is known about the influence of their inherited genetic heterogeneity on phenotypic traits and production potential from the bioprocessing point of view. Herein, we present a global transcriptome and proteome profiling of three commonly used parental cell lines (CHO-K1, CHO-DXB11 and CHO-DG44) in suspension cultures and further report their growth-related characteristics, and N- and O-glycosylation patterns of host cell proteins (HCPs). The comparative multi-omics analysis indicated that some physiological variations of CHO cells grown in the same media are possibly originated from the genetic deficits, particularly in the cell cycle progression. Moreover, the dihydrofolate reductase deficient DG44 and DXB11 possess relatively less active metabolism when compared to K1 cells. The protein processing abilities and the N- and O-glycosylation profiles also differ significantly across the host cell lines, suggesting the need to select host cells in a rational manner for the cell line development on the basis of recombinant protein being produced.


2018 ◽  
Vol 26 ◽  
pp. 204020661880758 ◽  
Author(s):  
Evelyn J Franco ◽  
Jaime L Rodriquez ◽  
Justin J Pomeroy ◽  
Kaley C Hanrahan ◽  
Ashley N Brown

Chikungunya virus (CHIKV) is a mosquito-borne virus that has recently emerged in the Western Hemisphere. Approved antiviral therapies or vaccines for the treatment or prevention of CHIKV infections are not available. This study aims to evaluate the antiviral activity of commercially available broad-spectrum antivirals against CHIKV. Due to host cell-specific variability in uptake and intracellular processing of drug, we evaluated the antiviral effects of each agent in three cell lines. Antiviral activities of ribavirin (RBV), interferon-alfa (IFN-α) and favipiravir (FAV) were assessed in CHIKV-infected Vero, HUH-7, and A549 cells. CHIKV-infected cells were treated with increasing concentrations of each agent for three days and viral burden was quantified by plaque assay on Vero cells. Cytotoxic effects of RBV, FAV and IFN-α were also evaluated. Antiviral activity differed depending on the cell line used for evaluation. RBV had the greatest antiviral effect in HUH-7 cells (EC50 = 2.575 µg/mL); IFN-α was most effective in A549 cells (EC50 = 4.235 IU/mL); and FAV in HUH-7 cells (EC50 = 20.00 μg/mL). The results of our study show FAV and IFN-α are the most promising candidates, as their use led to substantial reductions in viral burden at clinically achievable concentrations in two human-derived cell lines. FAV is an especially attractive candidate for further investigation due to its oral bioavailability. These findings also highlight the importance of cell line selection for preclinical drug trials.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael T. C. Poon ◽  
Morgan Bruce ◽  
Joanne E. Simpson ◽  
Cathal J. Hannan ◽  
Paul M. Brennan

Abstract Background Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. Methods We searched Medline and Embase (Jan 1994-Jan 2021) for studies evaluating the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Key data items included type of cell lines, temozolomide exposure duration in hours (hr), and cell viability measure (IC50). Results We included 212 studies from 2789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0–27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50, the median value for U87 at 24 h, 48 h and 72 h was 123.9 μM (IQR 75.3–277.7 μM), 223.1 μM (IQR 92.0–590.1 μM) and 230.0 μM (IQR 34.1–650.0 μM), respectively. The median IC50 at 72 h for patient-derived cell lines was 220 μM (IQR 81.1–800.0 μM). Conclusion Temozolomide sensitivity reported in comparable studies was not consistent between or within malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.


2009 ◽  
Vol 7 (4) ◽  
pp. 650-656 ◽  
Author(s):  
Sunny C. Jiang ◽  
Jijun Han ◽  
Jian-Wen He ◽  
Weiping Chu

Human viral contamination in drinking and recreational waters poses health risks. The application of PCR-based molecular technology has advanced our knowledge of the occurrence and prevalence of human viruses in water; however, it has provided no information on viral viability and infectivity. Four human cell lines were compared for their sensitivity to different serotypes of human adenoviruses using the TCID50 test. The sensitivity of each cell line varied with different serotypes of adenovirus. Human embryonic kidney cell line 293A and human lung carcinoma cell line A549 were the most sensitive, especially to enteric adenovirus 40 and 41. Plaque assay of primary sewage samples showed 293A can detect viral plaques in 7 of 13 primary sewage samples tested. Adenoviruses were also isolated using 293A from environmental water concentrates. Cloning and sequencing of environmental adenoviral isolates indentified them to be aligned with adenoviruses serotype 40 and serotype 5. The result of this study suggests that plaque assay with 293A cell line is suitable for detection of adenovirus in the aquatic environment. Combining this cell culture with molecular methods for viral assay in the aquatic environment will provide critical information for risk assessment.


2019 ◽  
Vol 4 (2) ◽  
pp. 82 ◽  
Author(s):  
Caio Haddad Franco ◽  
Laura Maria Alcântara ◽  
Eric Chatelain ◽  
Lucio Freitas-Junior ◽  
Carolina Borsoi Moraes

Cell-based screening has become the major compound interrogation strategy in Chagas disease drug discovery. Several different cell lines have been deployed as host cells in screening assays. However, host cell characteristics and host-parasite interactions may play an important role when assessing anti-T. cruzi compound activity, ultimately impacting on hit discovery. To verify this hypothesis, four distinct mammalian cell lines (U2OS, THP-1, Vero and L6) were used as T. cruzi host cells in High Content Screening assays. Rates of infection varied greatly between different host cells. Susceptibility to benznidazole also varied, depending on the host cell and parasite strain. A library of 1,280 compounds was screened against the four different cell lines infected with T. cruzi, resulting in the selection of a total of 82 distinct compounds as hits. From these, only two hits were common to all four cell lines assays (2.4%) and 51 were exclusively selected from a single assay (62.2%). Infected U2OS cells were the most sensitive assay, as 55 compounds in total were identified as hits; infected THP-1 yielded the lowest hit rates, with only 16 hit compounds. Of the selected hits, compound FPL64176 presented selective anti-T. cruzi activity and could serve as a starting point for the discovery of new anti-chagasic drugs.


2019 ◽  
Vol 20 (12) ◽  
pp. 3035 ◽  
Author(s):  
Hebing Liu ◽  
Hsiao-Mei Liao ◽  
Bingjie Li ◽  
Shien Tsai ◽  
Guo-Chiuan Hung ◽  
...  

Zika virus (ZIKV) transmission can cause serious fetal neurological abnormalities. ZIKV persistence in various human cells and tissues can serve as infectious reservoirs and post serious threats to public health. The human embryonic kidney (HEK293) cell line with known neuronal developmental properties was readily infected by ZIKV in a strain-dependent fashion. Significant cytopathic effect in HEK293 cells infected by the prototype MR 766 strain of ZIKV resulted in complete loss of cells, while small numbers of HEK293 cells infected by contemporary ZIKV isolates (PRV or FLR strain) continued to survive and regrow to confluency in the culture around two months after initial infection. Most, if not all, of the cells in the two resulting persistently ZIKV-infected HEK293 cell lines tested positive for ZIKV antigen. Compared to HEK293 control cells, the persistently ZIKV-infected HEK293 cells had slower growth rates with some cells undergoing apoptosis in culture. The “persistent ZIKVs” produced constitutively by both PRV and FLR strains ZIKV-infected HEK293 cells had significantly attenuated cell infectivity and/or cytopathogenicity. Comparative genome sequence analyses between the persistent ZIKVs and the original inoculum ZIKVs showed no clonal selection with specific gene mutations in the prolonged process of establishing persistently PRV strain ZIKV-infected HEK293 cells; while selection of ZIKV subclones with mutations in the envelope, protein pr and multiple NS genes was evident in developing persistently FLR strain ZIKV-infected HEK293 cell line. Our study provides molecular insights into the complex interplays of ZIKV and human host cells in establishing ZIKV persistence.


Author(s):  
Okay Saydam ◽  
Nurten Saydam

Cancer metastasis is the major cause of death from cancer (Massague and Obenauf, 2016; Steeg, 2016). The extensive genetic heterogeneity and cellular plasticity of metastatic tumors set a prime barrier for the current cancer treatment protocols (Boumahdi and de Sauvage, 2020). In addition, acquired therapy resistance has become an insurmountable obstacle that abolishes the beneficial effects of numerous anti-cancer regimens (De Angelis et al., 2019; Boumahdi and de Sauvage, 2020). Here we report that deficiency of Ku leads to the exploitation of host cells in human cancer cell line models. We found that, upon conditional deletion of XRCC6 that codes for Ku70, HCT116 human colorectal cancer cells gain a parasitic lifestyle that is characterized by the continuous cycle of host cell exploitation. We also found that DAOY cells, a human medulloblastoma cell line, innately lack nuclear Ku70/Ku86 proteins and utilize the host-cell invasion/exit mechanism for maintenance of their survival, similarly to the Ku70 conditionally-null HCT116 cells. Our study demonstrates that a functional loss of Ku protein promotes an adaptive, opportunistic switch to a parasitic lifestyle in human cancer cells, providing evidence for a previously unknown mechanism of cell survival in response to severe genomic stress. We anticipate that our study will bring a new perspective for understanding the mechanisms of cancer cell evolution, leading to a shift in the current concepts of cancer therapy protocols directed to the prevention of cancer metastasis and therapy resistance.


2020 ◽  
Author(s):  
Thailín Lao-González ◽  
Alexi Bueno Soler ◽  
Arnelys Duran Hernandez ◽  
Katya Sosa Aguiar ◽  
Luis Eduardo Hinojosa Puerta ◽  
...  

Abstract The high prices of biopharmaceuticals or biologics used in the treatment of many diseases limit the access of patients to these novel therapies. One example is the monoclonal antibody trastuzumab, successfully used for breast cancer treatment. An economic alternative is the generation of biosimilars to these expensive biopharmaceuticals. Since antibody therapies may require large doses over a long period of time, robust platforms and strategies for cell line development are essential for the generation of recombinant cell lines with higher levels of expression. Here, we obtained trastuzumab-expressing CHO-K1 cells through a screening and selection strategy that combined the use of host cells pre-adapted to protein-free media and suspension culture and lentiviral vectors. The results demonstrated that the early screening strategy obtained recombinant CHO-K1 cell populations with higher enrichment of IgG-expressing cells. Moreover, the measurement of intracellular heavy chain polypeptide by flow cytometry was a useful metric to characterize the homogeneity of cell population, and our results suggest this could be used to predict the expression levels of monoclonal antibodies in early stages of cell line development. Additionally, we propose an approach using 25cm2 T-flasks in suspension and shaking culture conditions as a screening tool to identify high producing cell lines. Finally, trastuzumab-expressing CHO-K1 clones were generated and characterized by batch culture, and preliminary results related to HER2-recognition capacity were successful. Further optimization of elements such as gene optimization, vector selection, type of amplification/selection system, cell culture media composition, in combination with this strategy will allow obtaining high producing clones.


2021 ◽  
Author(s):  
Lavanya not provided C ◽  
Vidya Niranjan ◽  
Aajnaa not provided Upadhyaya ◽  
Arpita not provided Guha Neogi

The Sars-CoV-2 virus is a previously uncharacterized coronavirus and causative agent of the COVID-19 pandemic. Gene expression analysis followed by pathway analysis helps researchers to find possible key targets present in biological pathways of host cells that are targeted by the SARS-CoV-2 virus. This review considers the peripheral blood mononuclear cell line (PBMC) and the normal human bronchial epithelial (NHBE) cell line, both of which support SARS-CoV-2 viral replication. Pathway analysis between the healthy and patient samples of the respective cell lines shall provide useful insights on the COVID-19 disease. Initially, the datasets from the respective cell lines were collected from the NCBI databank. These datasets underwent further analysis and were mapped and aligned to the human reference genome. This outputs the file in the BAM format. The BAM files along with the human reference genome in the GFF format were uploaded to an open-source software called OmicsBox 2.0 for differential gene expression analysis. This resulted in the generation of a table containing the differentially expressed genes which were upregulated and downregulated. These gene lists were uploaded to various pathway analyzers that map the significant genes to the most significant pathways. In this project, KOBAS 3.0 and Enrichr were used for pathway analysis. The pathways obtained from the above-mentioned pathway analyzers were further narrowed down by manual comparison. It was observed that many pathways were similar between the NHBE and PBMC cell lines. However, they were also different in terms of their overall nature. In this project, many patterns were seen through the pathways obtained, however, further optimization and functionality studies must be performed in order to establish conclusive results on the scope of the COVID-19 disease. Expanding research on the scope of the disease by going back to the basics will generate new and valuable information about the virus. This knowledge will help us combat the disease in a better and appropriate manner.


Sign in / Sign up

Export Citation Format

Share Document