scholarly journals Temporal Release of Fatty Acids and Sugars in the Spermosphere: Impacts on Enterobacter cloacae-Induced Biological Control

2008 ◽  
Vol 74 (14) ◽  
pp. 4292-4299 ◽  
Author(s):  
Sofia Windstam ◽  
Eric B. Nelson

ABSTRACT The aim of this study was to determine the temporal release of fatty acids and sugars from corn and cucumber seeds during the early stages of seed germination in order to establish whether sugars found in exudate can prevent exudate fatty acid degradation by Enterobacter cloacae. Both saturated (long-chain saturated fatty acids [LCSFA]) and unsaturated (long-chain unsaturated fatty acids [LCUFA]) fatty acids were detected in corn and cucumber seed exudates within 15 min after seed sowing. LCSFA and LCUFA were released at a rate of 26.1 and 6.44 ng/min/seed by corn and cucumber seeds, respectively. The unsaturated portion of the total fatty acid pool from both plant species contained primarily oleic and linoleic acids, and these fatty acids were released at a combined rate of 6.6 and 0.67 ng/min/seed from corn and cucumber, respectively. In the absence of seed exudate sugars, E. cloacae degraded linoleic acid at rates of 29 to 39 ng/min, exceeding the rate of total fatty acid release from seeds. Sugars constituted a significant percentage of corn seed exudate, accounting for 41% of the total dry seed weight. Only 5% of cucumber seed exudate was comprised of sugars. Glucose, fructose, and sucrose were the most abundant sugars present in seed exudate from both plant species. Corn seeds released a total of 137 μg/seed of these three sugars within 30 min of sowing, whereas cucumber seeds released 0.83 μg/seed within the same time frame. Levels of glucose, fructose, and sucrose found in corn seed exudate (90 to 342 μg) reduced the rate of linoleic acid degradation by E. cloacae to 7.5 to 8.8 ng/min in the presence of either sugar, leaving sufficient concentrations of linoleic acid to activate Pythium ultimum sporangia Our results demonstrate that elevated levels of sugars in the corn spermosphere can prevent the degradation of LCUFA by E. cloacae, leading to its failure to suppress P. ultimum sporangial activation, germination, and subsequent disease development.

2020 ◽  
pp. 1-26
Author(s):  
Yan Wang ◽  
Yiwei Tang ◽  
Ye Ji ◽  
Wenhui Xu ◽  
Naeem Ullah ◽  
...  

Abstract In this study, we analysed the effects of single nucleotide polymorphism (SNP) rs174547 (T/C) in the fatty acid desaturase 1 (FADS1) gene on long-chain polyunsaturated fatty acid levels. Four databases were searched to retrieve related literature with keywords such as fatty acid, SNP, FADS1, and rs174547. A meta-analysis of the data was performed using Stata12.0 software, including summary statistics, test for heterogeneity, evaluation of publication bias, subgroup analysis, and sensitivity analysis. The associations between rs174547 in FADS1 and seven types of fatty acids, and delta-5 (D5D) and delta-6 fatty acid desaturase (D6D) activity were assessed based on the pooled results from 11 manuscripts. A total of 3713 individuals (1529 TT and 2184 TC+CC) were included. The results demonstrated that minor C allele carriers of rs174547 had higher linoleic acid (LA; P < 0.001) and α-linolenic acid (P = 0.020) levels, lower gamma linoleic acid (GLA; P = 0.001) and arachidonic acid (P = 0.024) levels, and lower D5D (P = 0.005) and D6D (P = 0.004) activities than the TT genotype group. Stratification analysis showed that minor C allele carriers of rs174547 had higher LA and lower GLA levels and lower D6D activities in plasma (LA, P < 0.001; GLA, P < 0.001; D6D activity, P < 0.001) samples and in Asian populations (LA, P < 0.001; GLA, P = 0.001; D6D activity, P = 0.001) than the TT genotype group. In conclusion, minor C allele carriers of the SNP rs174547 were associated with decreased activity of D5D and D6D.


2007 ◽  
Vol 2007 ◽  
pp. 151-151 ◽  
Author(s):  
E. J. Kim ◽  
J. D. Wood ◽  
I. Richardson ◽  
S. A. Huws ◽  
N. D. Scollan

Previous studies have shown that including fish oil (FO) in the diet of beef cattle resulted in increased long chain C20n-3 PUFA (C20:5n-3 and C22:6n-3) in muscle resulting in a lower n-6:n-3 ratio (Scollan et al., 2005). Fish oil is considered to be a good inhibitor of biohydrogenation in the rumen, resulting in increased production of C18:1 trans-11 (Vaccenic acid), the precursor for conjugated linoleic acid (CLA cis-9, trans-11) in muscle. This study investigated the effects of incremental levels of FO in the diet on fatty acid metabolism in the rumen.


1961 ◽  
Vol 39 (12) ◽  
pp. 1855-1863 ◽  
Author(s):  
Joyce L. Beare

Fatty acids of liver, carcass, and milk of rats fed corn oil, rapeseed oil, partially hydrogenated herring oil, or margarine were examined by gas–liquid chromatography. Appreciable quantities of linoleic acid were maintained in the tissues and milk, even when the hydrogenated herring oil with a low level of linoleic acid was fed. The proportion of C20and C22acids deposited or secreted was related to that of the diet, and was highest with rapeseed oil. In the livers of rats fed each diet, long-chain, polyunsaturated acids were observed. The fatty acids of milk more closely reflected the dietary pattern than did those of the tissues.


1971 ◽  
Vol 125 (4) ◽  
pp. 963-969 ◽  
Author(s):  
T. Nurminen ◽  
H. Suomalainen

1. The total yield of fatty acids from the whole envelopes was markedly higher than that obtained from the ordinary cell walls. In both samples the major fatty acids were C16 and C18 acids. 2. The whole envelopes contained C18 acids and long-chain (C19–C26) fatty acids, in a higher proportion than did the ordinary cell walls. Fifteen fatty acids with more than 18 carbon atoms were identified, among which 2-hydroxy-C26:0 and C26:0 acids predominated. 3. A complex sphingolipid containing inositol, phosphorus and mannose was isolated from the whole cell envelopes. The main fatty acids of this lipid were 2-hydroxy-C26:0 and C26:0 acids. It was concluded that this sphingolipid is present both in the ordinary cell wall and in the plasma membrane of baker's yeast. 4. The neutral lipids amounted to over 50% and the glycerophosphatides to about 30% of the total fatty acid content of the whole envelope. The major fatty acids in these lipids were C16:1, C18:1 and C16:0 acids. The proportion of fatty acids with more than 18 carbon atoms was lowest in the neutral lipids, whereas the neutral glycolipids contained the highest percentage of these fatty acids. Acidic glycolipids amounted to 14% of the total fatty acid content of the whole envelope. The presence of a cerebroside sulphate in this lipid fraction was demonstrated, whereas the high content of 2-hydroxy-C26:0 acid found is caused by the complex inositol- and mannose-containing sphingolipid.


2004 ◽  
Vol 32 (1) ◽  
pp. 86-87 ◽  
Author(s):  
H. Guillou ◽  
S. D'Andrea ◽  
V. Rioux ◽  
S. Jan ◽  
P. Legrand

A single gene encoding a δ6-desaturase (FADS2) has been isolated and characterized in mammalian species. This δ6-desaturase plays a major role in the biosynthesis of PUFAs (polyunsaturated fatty acids). It catalyses the rate-limiting desaturation of linoleic acid (C18:2n−6) and α-linolenic acid (C18:3n−3) required for the biosynthesis of long-chain PUFAs. Moreover, recent studies have provided strong evidence that this δ6-desaturase also acts on 24-carbon PUFAs of both the n−6 and n−3 series. Another substrate of this δ6-desaturase has been identified through complementary works from different investigators. This δ6-desaturase acts on a saturated fatty acid, palmitic acid (C16:0), leading to the newly characterized biosynthesis of hexadecenoic acid (C16:1n−10) or sapienate.


2000 ◽  
Vol 66 (12) ◽  
pp. 5340-5347 ◽  
Author(s):  
Karin van Dijk ◽  
Eric B. Nelson

ABSTRACT Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses ofP. ultimum, we generated mutants of E. cloacaeto evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacaeEcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in β-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadLcomplemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacaeprevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections.


2005 ◽  
Vol 94 (2) ◽  
pp. 221-230 ◽  
Author(s):  
A. García-de-Lorenzo ◽  
R. Denia ◽  
P. Atlan ◽  
S. Martinez-Ratero ◽  
A. Le Brun ◽  
...  

It has been claimed that lipid emulsions with a restricted linoleic acid content can improve the safety of total parenteral nutrition (TPN). The tolerability of TPN and its effects on the metabolism of fatty acids were assessed in this prospective, double-blind, randomised study comparing an olive/soyabean oil long-chain triacylglycerol (LCT) with a medium-chain triacylglycerol (MCT)/LCT; 50:50 (w) based lipid emulsion in two groups (O and M, respectively; eleven per group) of severely burned patients. After resuscitation (48–72 h), patients received TPN providing 147 kJ/kg per d (35 kcal/kg per d) with fat (1·3 g/kg per d) for 6 d Plasma fatty acids, laboratory parameters including liver function tests, and plasma cytokines were assessed before and after TPN. Adverse events encountered during TPN and the clinical outcomes of patients within the subsequent 6 months were recorded. With both lipid emulsions, the conversion of linoleic acid in its higher derivatives (di-homo-γ-linolenic acid) improved and essential fatty acid deficiency did not appear. Abnormalities of liver function tests occurred more frequently in the M (nine) than in the O (three) group (P=0·04, Suissa–Shuster test). Seven patients (four from group O and three from group M) died as a consequence of severe sepsis 3–37 d after completion of the 6 d TPN period. When compared with the surviving patients, those who died were older (P=0·01) and hyperglycaemic at baseline (P<0·001), and their plasma IL-6 levels continued to increase (P<0·04). Although fatty acid metabolism and TPN tolerability were similar with both lipid emulsions, the preservation of liver function noted with the use of the olive oil-based lipid emulsions deserves confirmation.


1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 682-682 ◽  
Author(s):  
Kayla Dillard ◽  
Morgan Coffin ◽  
Gabriella Hernandez ◽  
Victoria Smith ◽  
Catherine Johnson ◽  
...  

Abstract Objectives Non-alcoholic fatty liver disease (NAFLD) represents the major cause of pediatric chronic liver pathology in the United States. The objective of this study was to compare the relative effect of inclusion of isocaloric amounts of saturated medium-chain fatty acids (hydrogenated coconut oil), saturated long-chain fatty acids (lard) and unsaturated long-chain fatty acids (olive oil) on endpoints of NAFLD and insulin resistance. Methods Thirty-eight 15-d-old Iberian pigs were fed 1 of 4 diets containing (g/kg body weight × d) 1) control (CON; n = 8): 0 g fructose, 10.5 g fat, and 187 kcal metabolizable energy (ME), 2) lard (LAR; n = 10): 21.6 g fructose, 17.1 g fat (100% lard) and 299 kcal ME, 3) hydrogenated coconut oil (COCO; n = 10): 21.6 g fructose, 16.9 g fat (42.5% lard and 57.5% coconut oil) and 299 kcal ME, and 4) olive oil (OLV, n = 10): 21.6 g fructose, 17.1 g fat (43.5% lard and 56.5% olive oil) and 299 kcal ME, for 9 consecutive weeks. Body weight was recorded every 3 d. Serum markers of liver injury and dyslipidemia were measured on d 60 at 2 h post feeding, with all other serum measures assessed on d 70. Liver tissue was collected on d 70 for histology, triacylglyceride (TG) quantification, and metabolomics analysis. Results Tissue histology indicated the presence of steatosis in LAR, COCO and OLV compared with CON (P ≤ 0.001), with a further increase in in non-alcoholic steatohepatitis (NASH) in OLV and COCO compared with LAR (P ≤ 0.01). Alanine and aspartate aminotransferases were higher in COCO and OLV (P ≤ 0.01) than CON. All treatment groups had lower liver concentrations of methyl donor's choline and betaine versus CON, while bile acids were differentially changed (P ≤ 0.05). COCO had higher levels of TGs with less carbons (Total carbons &lt; 52) than all other groups (P ≤ 0.05). Several long-chain acylcarnitines involved in fat oxidation were higher in OLV versus all other groups (P ≤ 0.05). Conclusions Inclusion of fats enriched in medium-chain saturated and long-chain unsaturated fatty acids in a high-fructose high-fat diet increased liver injury, compared with fats with a long-chain saturated fatty acid profile. Further research is required to investigate the mechanisms causing this difference in physiological response to these dietary fat sources. Funding Sources ARI, AcornSeekers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


Sign in / Sign up

Export Citation Format

Share Document