scholarly journals Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development

2016 ◽  
Vol 82 (14) ◽  
pp. 4133-4144 ◽  
Author(s):  
Matilde Fernández ◽  
Bertrand Morel ◽  
Juan L. Ramos ◽  
Tino Krell

ABSTRACTThe remarkable metal resistance of many microorganisms is related to the presence of multiple metal resistance operons.Pseudomonas putidaKT2440 can be considered a model for these microorganisms since its arsenic resistance is due to the action of proteins encoded by the two paralogous arsenic resistance operons ARS1 and ARS2. Both operons contain the genes encoding the transcriptional regulators ArsR1 and ArsR2 that control operon expression. We show here that purified ArsR1 and ArsR2 bind the trivalent salt of arsenic (arsenite) with similar affinities (~30 μM), whereas no binding is observed for the pentavalent salt (arsenate). Furthermore, trivalent salts of bismuth and antimony showed binding to both paralogues. The positions of cysteines, found to bind arsenic in other homologues, indicate that ArsR1 and ArsR2 employ different modes of arsenite recognition. Both paralogues are dimeric and possess significant thermal stability. Both proteins were used to construct whole-cell,lacZ-based biosensors. Whereas responses to bismuth were negligible, significant responses were observed for arsenite, arsenate, and antimony. Biosensors based on theP. putidaarsB1 arsB2arsenic efflux pump double mutant were significantly more sensitive than biosensors based on the wild-type strain. This sensitivity enhancement by pump mutation may be a convenient strategy for the construction of other biosensors. A frequent limitation found for other arsenic biosensors was their elevated background signal and interference by inorganic phosphate. The constructed biosensors show no interference by inorganic phosphate, are characterized by a very low background signal, and were found to be suitable to analyze environmental samples.IMPORTANCEArsenic is at the top of the priority list of hazardous compounds issued by the U.S. Agency for Toxic Substances and Disease. The reason for the stunning arsenic resistance of many microorganisms is the existence of paralogous arsenic resistance operons.Pseudomonas putidaKT2440 is a model organism for such bacteria, and their duplicatedarsoperons and in particular their ArsR transcription regulators have been studied in depth byin vivoapproaches. Here we present an analysis of both purified ArsR paralogues by different biophysical techniques, and data obtained provide valuable insight into their structure and function. Particularly insightful was the comparison of ArsR effector profiles determined byin vitroandin vivoexperimentation. We also report the use of both paralogues to construct robust and highly sensitive arsenic biosensors. Our finding that the deletion of both arsenic efflux pumps significantly increases biosensor sensitivity is of general relevance in the biosensor field.

2018 ◽  
Vol 63 (2) ◽  
pp. e01718-18 ◽  
Author(s):  
Srijan Ranjitkar ◽  
Adriana K. Jones ◽  
Mina Mostafavi ◽  
Zachary Zwirko ◽  
Oleg Iartchouk ◽  
...  

ABSTRACT Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa. Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.


2021 ◽  
Author(s):  
Giovanni Gallo ◽  
Ioannis Mougiakos ◽  
Mauricio Bianco ◽  
Miriam Carbonaro ◽  
Andrea Carpentieri ◽  
...  

Arsenic detoxification systems can be found in a wide range of organisms, from bacteria to man. In a previous study, we discovered an arsenic-responsive transcriptional regulator in the thermophilic bacterium Thermus thermophilus HB27 (TtSmtB). Here, we characterize the arsenic resistance system of T. thermophilus in more detail. We employed TtSmtB-based pull-down assays with protein extracts from cultures treated with arsenate and arsenite to obtain an S-adenosylmethionine (SAM)-dependent arsenite methyltransferase (TtArsM). In vivo and in vitro analyses were performed to shed light on this new component of the arsenic resistance network and its peculiar catalytic mechanism. Heterologous expression of TtarsM in Escherichia coli resulted in arsenite detoxification at mesophilic temperatures. Although TtArsM does not contain a canonical arsenite binding site, the purified protein does catalyse SAM-dependent arsenite methylation. In addition, in vitro analyses confirmed the unique interaction between TtArsM and TtSmtB. Next, a highly efficient ThermoCas9-based genome-editing tool was developed to delete the TtArsM-encoding gene on the T. thermophilus genome, and to confirm its involvement in the arsenite detoxification system. Finally, the TtarsX efflux pump gene in the T. thermophilus ΔTtarsM genome was substituted by a gene, encoding a stabilised yellow fluorescent protein (sYFP), to create a sensitive genome-based bioreporter system for the detection of arsenic ions.


2015 ◽  
Vol 59 (5) ◽  
pp. 2720-2725 ◽  
Author(s):  
Dana R. Bowers ◽  
Henry Cao ◽  
Jian Zhou ◽  
Kimberly R. Ledesma ◽  
Dongxu Sun ◽  
...  

ABSTRACTAntimicrobial resistance amongAcinetobacter baumanniiis increasing worldwide, often necessitating combination therapy. The clinical utility of using minocycline with polymyxin B is not well established. In this study, we investigated the activity of minocycline and polymyxin B against 1 laboratory isolate and 3 clinical isolates ofA. baumannii. Minocycline susceptibility testing was performed with and without an efflux pump inhibitor, phenylalanine-arginine β-naphthylamide (PAβN). The intracellular minocycline concentration was determined with and without polymyxin B (0.5 μg/ml). Time-kill studies were performed over 24 h using approximately 106CFU/ml of each strain with clinically relevant minocycline concentrations (2 μg/ml and 8 μg/ml), with and without polymyxin B (0.5 μg/ml). Thein vivoefficacy of the combination was assessed in a neutropenic murine pneumonia model. Infected animals were administered minocycline (50 mg/kg), polymyxin B (10 mg/kg), or both to achieve clinically equivalent exposures in humans. A reduction in the minocycline MIC (≥4×) was observed in the presence of PAβN. The intracellular concentration andin vitrobactericidal effect of minocycline were both enhanced by polymyxin B. With 2 minocycline-susceptible strains, the bacterial burden in lung tissue at 24 h was considerably reduced by the combination compared to monotherapy with minocycline or polymyxin B. In addition, the combination prolonged survival of animals infected with a minocycline-susceptible strain. Polymyxin B increased the intracellular concentration of minocycline in bacterial cells and enhanced the bactericidal activity of minocycline, presumably due to efflux pump disruption. The clinical utility of this combination should be further investigated.


2003 ◽  
Vol 185 (16) ◽  
pp. 4755-4763 ◽  
Author(s):  
Antonia Rojas ◽  
Ana Segura ◽  
María Eugenia Guazzaroni ◽  
Wilson Terán ◽  
Ana Hurtado ◽  
...  

ABSTRACT The TtgGHI efflux pump of Pseudomonas putida DOT-T1E plays a key role in the innate and induced tolerance of this strain to aromatic hydrocarbons and antibiotics. The ttgGHI operon is expressed constitutively from two overlapping promoters in the absence of solvents and at a higher level in their presence, but not in response to antibiotics. Adjacent to the ttgGHI operon is the divergently transcribed ttgVW operon. In TtgV-deficient backgrounds, although not in a TtgW-deficient background, expression of the ttgGHI and ttgVW operons increased fourfold. This suggests that TtgV represses expression from the ttgG promoters and controls its own. TtgW plays no major role in the regulation of expression of these promoters. Primer extension revealed that the divergent ttgG and ttgV promoters overlap, and mobility shift assays indicated that TtgV binds to this region with high affinity. DNaseI footprint assays revealed that TtgV protected four DNA helical turns that include the −10 and −35 boxes of the ttgV and ttgG promoters.


2012 ◽  
Vol 56 (9) ◽  
pp. 4771-4778 ◽  
Author(s):  
Bartolomé Moyá ◽  
Alejandro Beceiro ◽  
Gabriel Cabot ◽  
Carlos Juan ◽  
Laura Zamorano ◽  
...  

ABSTRACTWe investigated the mechanisms leading toPseudomonas aeruginosapan-β-lactam resistance (PBLR) development during the treatment of nosocomial infections, with a particular focus on the modification of penicillin-binding protein (PBP) profiles and imipenem, ceftazidime, and ceftolozane (former CXA-101) PBP binding affinities. For this purpose, six clonally related pairs of sequential susceptible-PBLR isolates were studied. The presence ofoprD,ampD, anddacBmutations was explored by PCR followed by sequencing and the expression ofampCand efflux pump genes by real-time reverse transcription-PCR. The fluorescent penicillin Bocillin FL was used to determine PBP profiles in membrane preparations from all pairs, and 50% inhibitory concentrations (IC50s) of ceftolozane, ceftazidime, and imipenem were analyzed in 3 of them. Although a certain increase was noted (0 to 5 2-fold dilutions), the MICs of ceftolozane were ≤4 μg/ml in all PBLR isolates. All 6 PBLR isolates lacked OprD and overexpressedampCand one or several efflux pumps, particularlymexBand/ormexY. Additionally, 5 of them showed modified PBP profiles, including a modified pattern (n= 1) or diminished expression (n= 1) of PBP1a and a lack of PBP4 expression (n= 4), which correlated with AmpC overexpression driven bydacBmutation. Analysis of the essential PBP IC50s revealed significant variation of PBP1a/b binding affinities, both within each susceptible-PBLR pair and across the different pairs. Moreover, despite the absence of significant differences in gene expression or sequence, a clear tendency toward increased PBP2 (imipenem) and PBP3 (ceftazidime, ceftolozane, imipenem) IC50s was noted in PBLR isolates. Thus, our results suggest that in addition to AmpC, efflux pumps, and OprD, the modification of PBP patterns appears to play a role in thein vivoemergence of PBLR strains, which still conserve certain susceptibility to the new antipseudomonal cephalosporin ceftolozane.


2014 ◽  
Vol 58 (10) ◽  
pp. 6151-6156 ◽  
Author(s):  
Lindsey E. Nielsen ◽  
Erik C. Snesrud ◽  
Fatma Onmus-Leone ◽  
Yoon I. Kwak ◽  
Ricardo Avilés ◽  
...  

ABSTRACTTigecycline nonsusceptibility is concerning because tigecycline is increasingly relied upon to treat carbapenem- or colistin-resistant organisms. InEnterobacteriaceae, tigecycline nonsusceptibility is mediated by the AcrAB-TolC efflux pump, among others, and pump activity is often a downstream effect of mutations in their transcriptional regulators, cognate repressor genes, or noncoding regions, as demonstrated inEnterobacteriaceaeandAcinetobacterisolates. Here, we report the emergence of tigecycline nonsusceptibility in a longitudinal series of multidrug-resistant (MDR) and extensively drug-resistant (XDR)Klebsiella pneumoniaeisolates collected during tigecycline therapy and the elucidation of its resistance mechanisms. Clinical isolates were recovered prior to and during tigecycline therapy of a 2.5-month-old Honduran neonate. Antimicrobial susceptibility tests to tigecycline determined that the MIC increased from 1 to 4 μg/ml prior to the completion of tigecycline therapy. Unlike other studies, we did not find increased expression oframA,ramR,oqxA,acrB,marA, orrarAgenes by reverse transcription-quantitative PCR (qRT-PCR). Whole-genome sequencing revealed an IS5insertion element in nonsusceptible isolates 85 bp upstream of a putative efflux pump operon, here namedkpgABC, previously unknown to be involved in resistance. Introduction of thekpgABCgenes in a non-kpgABCbackground increased the MIC of tigecycline 4-fold and is independent of a functional AcrAB-TolC pump. This is the first report to propose a function forkpgABCand identify an insertion element whose presence correlated with thein vivodevelopment of tigecycline nonsusceptibility inK. pneumoniae.


2011 ◽  
Vol 56 (2) ◽  
pp. 1001-1009 ◽  
Author(s):  
Matilde Fernández ◽  
Susana Conde ◽  
Jesús de la Torre ◽  
Carlos Molina-Santiago ◽  
Juan-Luis Ramos ◽  
...  

ABSTRACTPseudomonas putidaKT2440 is a chloramphenicol-resistant bacterium that is able to grow in the presence of this antibiotic at a concentration of up to 25 μg/ml. Transcriptomic analyses revealed that the expression profile of 102 genes changed in response to this concentration of chloramphenicol in the culture medium. The genes that showed altered expression include those involved in general metabolism, cellular stress response, gene regulation, efflux pump transporters, and protein biosynthesis. Analysis of a genome-wide collection of mutants showed that survival of a knockout mutant in the TtgABC resistance-nodulation-division (RND) efflux pump and mutants in the biosynthesis of pyrroloquinoline (PQQ) were compromised in the presence of chloramphenicol. The analysis also revealed that an ABC extrusion system (PP2669/PP2668/PP2667) and the AgmR regulator (PP2665) were needed for full resistance toward chloramphenicol. Transcriptional arrays revealed that AgmR controls the expression of thepqqgenes and the operon encoding the ABC extrusion pump from the promoter upstream of open reading frame (ORF) PP2669.


2012 ◽  
Vol 56 (4) ◽  
pp. 2084-2090 ◽  
Author(s):  
Astrid Pérez ◽  
Margarita Poza ◽  
Ana Fernández ◽  
Maria del Carmen Fernández ◽  
Susana Mallo ◽  
...  

ABSTRACTMultidrug efflux pumps have emerged as important mechanisms of antimicrobial resistance in bacterial pathogens. In order to cause infection, pathogenic bacteria require mechanisms to avoid the effects of host-produced compounds, and express efflux pumps may accomplish this task. In this study, we evaluated the effect of the inactivation of AcrAB-TolC on antimicrobial resistance, fitness, and virulence inEnterobacter cloacae, an opportunistic pathogen usually involved in nosocomial infections. Two different clinical isolates ofE. cloacaewere used, EcDC64 (multidrug resistance overexpressing the AcrAB-TolC efflux pump) and Jc194 (basal AcrAB-TolC expression). TheacrAandtolCgenes were deleted in strains EcDC64 and Jc194 to produce, respectively, EcΔacrAand EcΔtolCand JcΔacrAand JcΔtolCknockout (KO) derivatives. Antibiotic susceptibility testing was performed with all isolates, and we discovered that these mechanisms are involved in the resistance ofE. cloacaeto several antibiotics. Competition experiments were also performed with wild-type and isogenic KO strains. The competition index (CI), defined as the mutant/wild-type ratio, revealed that theacrAandtolCgenes both affect the fitness ofE. cloacae, as fitness was clearly reduced in theacrAandtolCKO strains. The median CI values obtainedin vitroandin vivowere, respectively, 0.42 and 0.3 for EcDC64/EcΔacrA, 0.24 and 0.38 for EcDC64/EcΔtolC, 0.15 and 0.11 for Jc194/JcΔacrA, and 0.38 and 0.39 for Jc194/JcΔtolC. Use of an intraperitoneal mouse model of systemic infection revealed reduced virulence in bothE. cloacaeclinical strains when either theacrAortolCgene was inactivated. In conclusion, the structural components of the AcrAB-TolC efflux pump appear to play a role in antibiotic resistance as well as environmental adaptation and host virulence in clinical isolates ofE. cloacae.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Marie Petitjean ◽  
Paulo Juarez ◽  
Alexandre Meunier ◽  
Etienne Daguindau ◽  
Hélène Puja ◽  
...  

The biological features that allow a pathogen to survive in the hospital environment are mostly unknown. The extinction of bacterial epidemics in hospitals is mostly attributed to changes in medical practice, including infection control, but the role of bacterial adaptation has never been documented. We analysed a collection of Pseudomonas aeruginosa isolates belonging to the Besançon Epidemic Strain (BES), responsible for a 12year nosocomial outbreak, using a genotype-to-phenotype approach. Bayesian analysis estimated the emergence of the clone in the hospital 5 years before its opening, during the creation of its water distribution network made of copper. BES survived better than the reference strains PAO1 and PA14 in a copper solution due to a genomic island containing 13 metal-resistance genes and was specifically able to proliferate in the ubiquitous amoeba Vermamoeba vermiformis. Mutations affecting amino-acid metabolism, antibiotic resistance, lipopolysaccharide biosynthesis, and regulation were enriched during the spread of BES. Seven distinct regulatory mutations attenuated the overexpression of the genes encoding the efflux pump MexAB-OprM over time. The fitness of BES decreased over time in correlation with its genome size. Overall, the resistance to inhibitors and predators presumably aided the proliferation and propagation of BES in the plumbing system of the hospital. The pathogen further spread among patients via multiple routes of contamination. The decreased prevalence of patients infected by BES mirrored the parallel and convergent genomic evolution and reduction that affected bacterial fitness. Along with infection control measures, this may have participated in the extinction of BES in the hospital setting.


2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Ying Wang ◽  
Arathy D. S. Nair ◽  
Andy Alhassan ◽  
Deborah C. Jaworski ◽  
Huitao Liu ◽  
...  

ABSTRACT Ehrlichia chaffeensis, a tick-transmitted obligate intracellular rickettsial agent, causes human monocytic ehrlichiosis. In recent reports, we described substantial advances in developing random and targeted gene disruption methods to investigate the functions of E. chaffeensis genes. We reported earlier that the Himar1 transposon-based random mutagenesis is a valuable tool in defining E. chaffeensis genes critical for its persistent growth in vivo in reservoir and incidental hosts. The method also aided in extending studies focused on vaccine development and immunity. Here, we describe the generation and mapping of 55 new mutations. To define the critical nature of the bacterial genes, infection experiments were carried out in the canine host with pools of mutant organisms. Infection evaluation in the physiologically relevant host by molecular assays and by xenodiagnoses allowed the identification of many proteins critical for the pathogen’s persistent in vivo growth. Genes encoding proteins involved in biotin biosynthesis, protein synthesis and fatty acid biosynthesis, DNA repair, electron transfer, and a component of a multidrug resistance (MDR) efflux pump were concluded to be essential for the pathogen’s in vivo growth. Three known immunodominant membrane proteins, i.e., two 28-kDa outer membrane proteins (P28/OMP) and a 120-kDa surface protein, were also recognized as necessary for the pathogen’s obligate intracellular life cycle. The discovery of many E. chaffeensis proteins crucial for its continuous in vivo growth will serve as a major resource for investigations aimed at defining pathogenesis and developing novel therapeutics for this and related pathogens of the rickettsial family Anaplasmataceae.


Sign in / Sign up

Export Citation Format

Share Document