scholarly journals Survival ofEscherichia coli, Enterococci, andCampylobacterspp. in Sheep Feces on Pastures

2011 ◽  
Vol 77 (5) ◽  
pp. 1797-1803 ◽  
Author(s):  
Elaine M. Moriarty ◽  
Margaret L. Mackenzie ◽  
Naveena Karki ◽  
Lester W. Sinton

ABSTRACTThe survival of enteric bacteria in 10 freshly collected sheep fecal samples on pastures was measured in each of four seasons. Ten freshly collected feces were placed on pasture, and concentrations ofEscherichia coli, enterococci, andCampylobacterspp. were monitored until exhaustion of the fecal samples. In all four seasons, there was an increase in enterococcal concentrations by up to 3 orders of magnitude, with peak concentrations recorded between 11 and 28 days after deposition.E. coliconcentrations increased in three out of four seasons by up to 1.5 orders of magnitude, with peak concentrations recorded between 8 and 14 days after deposition. The apparent growth ofE. coliand enterococci was strongly influenced by the initial water content of the feces and the moisture gained during periods of rehydration following rainfalls. Conversely, the results suggested that dehydration promoted inactivation.Campylobacterspp. did not grow and were rapidly inactivated at a rate that tended to be faster at higher temperatures. Pulsed-field gel electrophoresis (PFGE) of a selection ofCampylobacterspp. suggested that these survival data are applicable to a range ofCampylobacterspp., including the most frequently isolated PFGE genotype from sheep in New Zealand, and to genotypes previously observed to cause disease in humans. The results of this study are currently being incorporated into a fecal microbe reservoir model that is designed to assist water managers' abilities to estimate microbial loads on pastures grazed by sheep, including the influence of factors such as rainfall and temperature.

2014 ◽  
Vol 6 (2) ◽  
pp. 45-53
Author(s):  
Dubravka Milanov ◽  
Dragan Fabijan ◽  
Bojana Prunić ◽  
Maja Velhner ◽  
Tamaš Petrović

Fecal samples originating from 15 Eurasian griffon vultures were collected during June 2012 in the territory of special nature reservation Uvac and examined for presence of enteric bacteria Escherichia coli and Salmonella spp. Salmonellas were isolated from five samples (33.3%) and serologically typed as Salmonella enterica subsp. enterica ser. Veneziana. E. coli was isolated from four samples (26.6%). Antimicrobial susceptibility testing revealed resistance to one and more antibiotics only in E. coli isolates.


1988 ◽  
Vol 71 (2) ◽  
pp. 295-298
Author(s):  
Marietta Suebrady ◽  
Robert J Strobel ◽  
Stanley E Katz

Abstract An analytical procedure, based on the concept that exposure of bacteria to antibiotics will result in the selection of a resistant population, was developed. Two strains of enteric bacteria, Escherichia coli CS-1 and Enterobacter cloacae B520, which are sensitive to a wide variety of antibiotics, were used as the test organisms. E. coli CS-1 were exposed to 1.00 μg antibiotic or antimicrobial/mL; E. cloacae B520 were exposed to 0.01, 0.10, 0.50,1.00, and 5.00 μg/mL. Both organisms developed increased resistance to other antibiotics after exposure to chlortetracycline and oxytetracycline, as measured by the minimum inhibitory concentration (MIC). E. cloacae B520 showed increased resistance to ampicillin, oxytetracycline, and chloramphenicol after exposure to levels as low as 0.10 μg/mL. Exposure to streptomycin, sulfamethazine, tylosin, bacitracin, flavomycin, virginiamycin, and monensin at levels of 1.00 μg/mL did not increase the MIC. Exposure to 5.00 *tg streptomycin, sulfamethazine, tylosin, and monensin/mL increased the MIC ofE. cloacae to one of the antibiotic markers. These increased MICs exceeded the 95% confidence limits of the MIC values of the unexposed organisms.


2007 ◽  
Vol 73 (24) ◽  
pp. 7917-7925 ◽  
Author(s):  
Lester W. Sinton ◽  
Robin R. Braithwaite ◽  
Carollyn H. Hall ◽  
Margaret L. Mackenzie

ABSTRACT The survival of enteric bacteria was measured in bovine feces on pasture. In each season, 11 cow pats were prepared from a mixture of fresh dairy cattle feces and sampled for up to 150 days. Four pats were analyzed for Escherichia coli, fecal streptococci, and enterococci, and four inoculated pats were analyzed for Campylobacter jejuni and Salmonella enterica. Two pats were placed on drainage collectors, and another pat was fitted with a temperature probe. In the first 1 to 3 weeks, there were increases (up to 1.5 orders of magnitude) in the counts of enterococci (in four seasons), E. coli (three seasons), fecal streptococci (three seasons), and S. enterica (two seasons), but there was no increase in the counts of C. jejuni. Thereafter, the counts decreased, giving an average ranking of the times necessary for 90% inactivation of C. jejuni (6.2 days from deposition) < fecal streptococci (35 days) < S. enterica (38 days) < E. coli (48 days) < enterococci (56 days). The pat temperature probably influenced bacterial growth, but the pattern of increases and decreases was primarily determined by desiccation; growth occurred when the water content was greater than 80%, but at a water content of 70 to 75% counts decreased. E. coli and enterococcus regrowth appeared to result from pat rehydration. Of 20 monthly leaching losses of E. coli, 16 were <10% of the total counts in the pat, and 12 were <1%. Drainage losses of C. jejuni (generally <1%) were detected for only 1 to 2 months. Although enterococci exhibited the best survival rate, higher final counts suggested that E. coli is the more practical indicator of bovine fecal pollution.


2014 ◽  
Vol 3 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Mohey A. Hassanain ◽  
Nawal A. Hassanain ◽  
Esam A. Hobballa ◽  
Fatma H. Abd- El Zaher ◽  
Mohamed Saber M. Saber

A surface sample representing a high contaminated loamy sand soil irrigated with sewage effluent since 30 years and was cultivated with artichoke was collected from Abu-Rawash sewage farm. The existence of HVC, enteric infectious bacteria and parasites in sewaged soil found to be negative for the forward and positive for the latter's. Out of the 30 samples separated from the sewaged soil sample, only 3 samples contained parasitic fauna of developed and undeveloped Ascaris (10%) and five samples contained Entamoeba coli. Results showed that the number of Ascaris eggs/gm soil was 0.017 and the number of E. coli/gm was 0.26. Decontamination of soil parasites was effective using either calcium hypochlorite or potassium permanganate. Salmonella, Vibrio and Campelobacter were detected in the high contaminated sewaged soil and survived for 120 days in the sewaged soil under all control and bioremediated treatments irrigated with either sewage effluent or water.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 291-298
Author(s):  
Sally A. Anderson ◽  
Gillian D. Lewis ◽  
Michael N. Pearson

Specific gene probe detection methods that utilise a non-selective culturing step were tested for the ability to recognise the presence of quiescent enteric bacteria (Escherichia coli and Enterococcus faecalis ) within illuminated freshwater and seawater microcosms. An E. coli specific uidA gene probe and a 23S rRNA oligonucleotide probe for Enterococci were compared with recoveries using membrane filtration and incubation on selective media (mTEC and mE respectively). From these microcosm experiments a greater initial detection (from 4 hours to 1 day) of E. coli and Ent. faecalis using gene probe methods was observed. Additionally, a comparison of E. coli direct viable counts (DVC) in sunlight exposed microcosms with recoveries by selective media and gene probe methods revealed a large number of viable non-culturable cells. This suggests that enumeration of E. coli by a gene probe method is limited by the replication of the bacteria during the initial non-selective enrichment step. The detection of stressed Ent. faecalis by the oligonucleotide gene probe method was significantly greater than recovery on selective mE agar, indicating an Enterococci non-growth phase.


Author(s):  
Xiaobing Li ◽  
Jianpeng Chen ◽  
Xiuqing Hu ◽  
Hongtao Fu ◽  
Jun Wang ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 90
Author(s):  
Andrzej Bryś ◽  
Joanna Bryś ◽  
Marko Obranović ◽  
Dubravka Škevin ◽  
Szymon Głowacki ◽  
...  

The olive oil industry represents an important productive sector in the Mediterranean basin countries. Olive stone is an essential by-product generated in the olive oil extraction industries and it represents roughly 10% by weight of the olive fruit. The seeds of pickled olives are also a significant waste product. In the present study, we have investigated the possibility of the use of differential scanning calorimetry for the thermal characterization of seeds from green and black pickled olives from Croatia. The differential scanning calorimeter (DSC) with a normal pressure cell equipped with a cooling system was used to determine the thermal properties of seeds from olives. The following analyses were also performed: the determination of calorific values in a pressure bomb calorimeter, the determination of initial water content, the determination of changes of water content during drying at the temperatures of 30 °C, 50 °C and 80 °C, the determination of a percentage content of seeds mass to the mass of the whole olives, and the determination of ash content. Seeds from olives are characterized by very good parameters as a biomass. The analyzed olive seeds were characterized by low water content, low ash content, and a relatively high caloric value.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


2001 ◽  
Vol 183 (13) ◽  
pp. 4004-4011 ◽  
Author(s):  
Devorah Friedberg ◽  
Michael Midkiff ◽  
Joseph M. Calvo

ABSTRACT Lrp (leucine-responsive regulatory protein) plays a global regulatory role in Escherichia coli, affecting expression of dozens of operons. Numerous lrp-related genes have been identified in different bacteria and archaea, includingasnC, an E. coli gene that was the first reported member of this family. Pairwise comparisons of amino acid sequences of the corresponding proteins shows an average sequence identity of only 29% for the vast majority of comparisons. By contrast, Lrp-related proteins from enteric bacteria show more than 97% amino acid identity. Is the global regulatory role associated withE. coli Lrp limited to enteric bacteria? To probe this question we investigated LrfB, an Lrp-related protein fromHaemophilus influenzae that shares 75% sequence identity with E. coli Lrp (highest sequence identity among 42 sequences compared). A strain of H. influenzae having anlrfB null allele grew at the wild-type growth rate but with a filamentous morphology. A comparison of two-dimensional (2D) electrophoretic patterns of proteins from parent and mutant strains showed only two differences (comparable studies withlrp + and lrp E. coli strains by others showed 20 differences). The abundance of LrfB in H. influenzae, estimated by Western blotting experiments, was about 130 dimers per cell (compared to 3,000 dimers per E. colicell). LrfB expressed in E. coli replaced Lrp as a repressor of the lrp gene but acted only to a limited extent as an activator of the ilvIH operon. Thus, although LrfB resembles Lrp sufficiently to perform some of its functions, its low abundance is consonant with a more local role in regulating but a few genes, a view consistent with the results of the 2D electrophoretic analysis. We speculate that an Lrp having a global regulatory role evolved to help enteric bacteria adapt to their ecological niches and that it is unlikely that Lrp-related proteins in other organisms have a broad regulatory function.


Sign in / Sign up

Export Citation Format

Share Document