scholarly journals Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System

2016 ◽  
Vol 82 (17) ◽  
pp. 5421-5427 ◽  
Author(s):  
Josef Altenbuchner

ABSTRACTThe clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) systems are adaptive immune systems of bacteria. A type II CRISPR-Cas9 system fromStreptococcus pyogeneshas recently been developed into a genome engineering tool for prokaryotes and eukaryotes. Here, we present a single-plasmid system which allows efficient genome editing ofBacillus subtilis. The plasmid pJOE8999 is a shuttle vector that has a pUC minimal origin of replication forEscherichia coli, the temperature-sensitive replication origin of plasmid pE194tsforB. subtilis, and a kanamycin resistance gene working in both organisms. For genome editing, it carries thecas9gene under the control of theB. subtilismannose-inducible promoter PmanPand a single guide RNA (sgRNA)-encoding sequence transcribed via a strong promoter. This sgRNA guides the Cas9 nuclease to its target. The 20-nucleotide spacer sequence at the 5′ end of the sgRNA sequence, responsible for target specificity, is located between BsaI sites. Thus, the target specificity is altered by changing the spacer sequences via oligonucleotides fitted between the BsaI sites. Cas9 in complex with the sgRNA induces double-strand breaks (DSBs) at its target site. Repair of the DSBs and the required modification of the genome are achieved by adding homology templates, usually two PCR fragments obtained from both sides of the target sequence. Two adjacent SfiI sites enable the ordered integration of these homology templates into the vector. The function of the CRISPR-Cas9 vector was demonstrated by introducing two large deletions in theB. subtilischromosome and by repair of thetrpC2mutation ofB. subtilis168.IMPORTANCEIn prokaryotes, most methods used for scarless genome engineering are based on selection-counterselection systems. The disadvantages are often the lack of a suitable counterselection marker, the toxicity of the compounds needed for counterselection, and the requirement of certain mutations in the target strain. CRISPR-Cas systems were recently developed as important tools for genome editing. The single-plasmid system constructed for the genome editing ofB. subtilisovercomes the problems of counterselection methods. It allows deletions and introduction of point mutations. It is easy to handle and very efficient, and it may be adapted for use in other firmicutes.

2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Antonio García-Moyano ◽  
Øivind Larsen ◽  
Sushil Gaykawad ◽  
Eleni Christakou ◽  
Catherine Boccadoro ◽  
...  

ABSTRACT Since its discovery as part of the bacterial adaptative immune system, CRISPR/Cas has emerged as the most promising tool for targeted genome editing over the past few years. Various tools for genome editing in Bacillus subtilis have recently been developed, expanding and simplifying its potential development as an industrial species. A collection of vectors compatible with high-throughput (HTP) fragment exchange (FX) cloning for heterologous expression in Escherichia coli and Bacillus was previously developed. This vector catalogue was through this work supplemented with editing plasmids for genome engineering in Bacillus by adapting two CRISPR/Cas plasmids to the cloning technology. The customized tools allow versatile editing at any chosen genomic position (single-plasmid strategy) or at a fixed genomic locus (double-plasmid strategy). The single-plasmid strategy was validated by deleting the spoIIAC gene, which has an essential role in sporulation. Using the double-plasmid strategy, we demonstrate the quick transition from plasmid-based subtilisin expression to the stable integration of the gene into the amyE locus of a seven-protease-deficient KO7 strain. The newly engineered B. subtilis strain allowed the successful production of a functional enzyme. The customized tools provide improvements to the cloning procedure, should be useful for versatile genomic engineering, and contribute to a cloning platform for a quick transition from HTP enzyme expression to production through the fermentation of industrially relevant B. subtilis and related strains. IMPORTANCE We complemented a cloning platform with new editing plasmids that allow a quick transition from high-throughput cloning and the expression of new enzymes to the stable integration of genes for the production of enzymes through B. subtilis fermentation. We present two systems for the effective assembly cloning of any genome-editing cassette that shortens the engineering procedure to obtain the final editing constructs. The utility of the customized tools is demonstrated by disrupting Bacillus’ capacity to sporulate and by introducing the stable expression of subtilisin. The tools should be useful to engineer B. subtilis strains by a variety of recombination events to ultimately improve the application range of this industry-relevant host.


2016 ◽  
Vol 45 (24) ◽  
pp. 6666-6684 ◽  
Author(s):  
Amrita Singh ◽  
Debojyoti Chakraborty ◽  
Souvik Maiti

The development and adaptation of CRISPR–Cas9 as a genome editing tool and chemical biology approaches for modulating its activity.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Carole Lartigue ◽  
Yanina Valverde Timana ◽  
Fabien Labroussaa ◽  
Elise Schieck ◽  
Anne Liljander ◽  
...  

ABSTRACT Mycoplasma species are responsible for several economically significant livestock diseases for which there is a need for new and improved vaccines. Most of the existing mycoplasma vaccines are attenuated strains that have been empirically obtained by serial passages or by chemical mutagenesis. The recent development of synthetic biology approaches has opened the way for the engineering of live mycoplasma vaccines. Using these tools, the essential GTPase-encoding gene obg was modified directly on the Mycoplasma mycoides subsp. capri genome cloned in yeast, reproducing mutations suspected to induce a temperature-sensitive (TS+) phenotype. After transplantation of modified genomes into a recipient cell, the phenotype of the resulting M. mycoides subsp. capri mutants was characterized. Single-point obg mutations did not result in a strong TS+ phenotype in M. mycoides subsp. capri, but a clone presenting three obg mutations was shown to grow with difficulty at temperatures of ≥40°C. This particular mutant was then tested in a caprine septicemia model of M. mycoides subsp. capri infection. Five out of eight goats infected with the parental strain had to be euthanized, in contrast to one out of eight goats infected with the obg mutant, demonstrating an attenuation of virulence in the mutant. Moreover, the strain isolated from the euthanized animal in the group infected with the obg mutant was shown to carry a reversion in the obg gene associated with the loss of the TS+ phenotype. This study demonstrates the feasibility of building attenuated strains of mycoplasma that could contribute to the design of novel vaccines with improved safety. IMPORTANCE Animal diseases due to mycoplasmas are a major cause of morbidity and mortality associated with economic losses for farmers all over the world. Currently used mycoplasma vaccines exhibit several drawbacks, including low efficacy, short time of protection, adverse reactions, and difficulty in differentiating infected from vaccinated animals. Therefore, there is a need for improved vaccines to control animal mycoplasmoses. Here, we used genome engineering tools derived from synthetic biology approaches to produce targeted mutations in the essential GTPase-encoding obg gene of Mycoplasma mycoides subsp. capri. Some of the resulting mutants exhibited a marked temperature-sensitive phenotype. The virulence of one of the obg mutants was evaluated in a caprine septicemia model and found to be strongly reduced. Although the obg mutant reverted to a virulent phenotype in one infected animal, we believe that these results contribute to a strategy that should help in building new vaccines against animal mycoplasmoses.


mSystems ◽  
2021 ◽  
Author(s):  
Rocío Aguilar Suárez ◽  
Minia Antelo-Varela ◽  
Sandra Maaß ◽  
Jolanda Neef ◽  
Dörte Becher ◽  
...  

Our present study showcases a genome-minimized nonpathogenic bacterium, the so-called midi Bacillus , as a chassis for the development of future industrial strains that serve in the production of high-value difficult-to-produce proteins. In particular, we explain how midi Bacillus , which lacks about one-third of the original genome, effectively secretes a protein of the major human pathogen Staphylococcus aureus that cannot be produced by the parental Bacillus subtilis strain.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Wei Shen ◽  
Jun Zhang ◽  
Binan Geng ◽  
Mengyue Qiu ◽  
Mimi Hu ◽  
...  

Abstract Background Efficient and convenient genome-editing toolkits can expedite genomic research and strain improvement for desirable phenotypes. Zymomonas mobilis is a highly efficient ethanol-producing bacterium with a small genome size and desirable industrial characteristics, which makes it a promising chassis for biorefinery and synthetic biology studies. While classical techniques for genetic manipulation are available for Z. mobilis, efficient genetic engineering toolkits enabling rapidly systematic and high-throughput genome editing in Z. mobilis are still lacking. Results Using Cas12a (Cpf1) from Francisella novicida, a recombinant strain with inducible cas12a expression for genome editing was constructed in Z. mobilis ZM4, which can be used to mediate RNA-guided DNA cleavage at targeted genomic loci. gRNAs were then designed targeting the replicons of native plasmids of ZM4 with about 100% curing efficiency for three native plasmids. In addition, CRISPR–Cas12a recombineering was used to promote gene deletion and insertion in one step efficiently and precisely with efficiency up to 90%. Combined with single-stranded DNA (ssDNA), CRISPR–Cas12a system was also applied to introduce minor nucleotide modification precisely into the genome with high fidelity. Furthermore, the CRISPR–Cas12a system was employed to introduce a heterologous lactate dehydrogenase into Z. mobilis with a recombinant lactate-producing strain constructed. Conclusions This study applied CRISPR–Cas12a in Z. mobilis and established a genome editing tool for efficient and convenient genome engineering in Z. mobilis including plasmid curing, gene deletion and insertion, as well as nucleotide substitution, which can also be employed for metabolic engineering to help divert the carbon flux from ethanol production to other products such as lactate demonstrated in this work. The CRISPR–Cas12a system established in this study thus provides a versatile and powerful genome-editing tool in Z. mobilis for functional genomic research, strain improvement, as well as synthetic microbial chassis development for economic biochemical production.


2017 ◽  
Vol 199 (14) ◽  
Author(s):  
David M. Rothstein ◽  
David Lazinski ◽  
Marcia S. Osburne ◽  
Abraham L. Sonenshein

ABSTRACT Mutants of Bacillis subtilis that are temperature sensitive for RNA synthesis during sporulation were isolated after selection with a 32P suicide agent. Whole-genome sequencing revealed that two of the mutants carried an identical lesion in the rsbU gene, which encodes a phosphatase that indirectly activates SigB, the stress-responsive RNA polymerase sigma factor. The mutation appeared to cause RsbU to be hyperactive, because the mutants were more resistant than the parent strain to ethanol stress. In support of this hypothesis, pseudorevertants that regained wild-type levels of sporulation at high temperature had secondary mutations that prevented expression of the mutant rsbU gene. The properties of these RsbU mutants support the idea that activation of SigB diminishes the bacterium's ability to sporulate. IMPORTANCE Most bacterial species encode multiple RNA polymerase promoter recognition subunits (sigma factors). Each sigma factor directs RNA polymerase to different sets of genes; each gene set typically encodes proteins important for responses to specific environmental conditions, such as changes in temperature, salt concentration, and nutrient availability. A selection for mutants of Bacillus subtilis that are temperature sensitive for RNA synthesis during sporulation unexpectedly yielded strains with a point mutation in rsbU, a gene that encodes a protein that normally activates sigma factor B (SigB) under conditions of salt stress. The mutation appears to cause RsbU, and therefore SigB, to be active inappropriately, thereby inhibiting, directly or indirectly, the ability of the cells to transcribe sporulation genes.


Author(s):  
Hend Altaib ◽  
Yuka Ozaki ◽  
Tomoya Kozakai ◽  
Kouta Sakaguchi ◽  
Izumi Nomura ◽  
...  

A series of Bifidobacterium - Escherichia coli shuttle vectors (pKO403- lacZ′ -Cm, pKO403- lacZ′ -Sp, pKO403- lacZ′ -p15A) were constructed based on the pKO403 backbone, which carries a temperature-sensitive replication origin. These vectors carry the lacZ′ α fragment, overhung by two facing type IIS restriction sites, for blue-white selection and seamless gene cloning.


2019 ◽  
Author(s):  
Alberto Jiménez ◽  
Birgit Hoff ◽  
José Luis Revuelta

AbstractThe CRISPR/Cas technologies constitute an essential tool for rapid genome engineering of many organisms, including fungi. The CRISPR/Cas9 system adapted for the industrial fungus Ashbya gossypii enables the efficient genome editing for the introduction of deletions, insertions and nucleotide substitutions. However, the Cas9 system is constrained to the existence of an specific 5’-NGG-3’ PAM sequence in the target site.Here we present a new CRISPR/Cas system for A. gossypii that expands the molecular toolbox available for microbial engineering of this fungus. The use of Cpf1 nuclease from Lachnospiraceae bacterium allows to employ a T-rich PAM sequence (5’-TTTN-3’) and facilitates the implementation of a multiplexing CRISPR/Cpf1 system adapted for A. gossypii. The system has been validated for the introduction of large deletions into five different auxotrophic marker genes (HIS3, ADE2, TRP1, LEU2 and URA3). The use of both crRNA and dDNA arrays in a multi-CRISPR/Cpf1 system was demonstrated to be an efficient strategy for multiplex gene deletion of up to four genes using a single multi-CRISPR/Cpf1 plasmid. Our results also suggest that the selection of the target sequence may significantly affect to the edition efficiency of the system.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Peter B. Otoupal ◽  
Masakazu Ito ◽  
Adam P. Arkin ◽  
Jon K. Magnuson ◽  
John M. Gladden ◽  
...  

ABSTRACT Microbial production of biofuels and bioproducts offers a sustainable and economic alternative to petroleum-based fuels and chemicals. The basidiomycete yeast Rhodosporidium toruloides is a promising platform organism for generating bioproducts due to its ability to consume a broad spectrum of carbon sources (including those derived from lignocellulosic biomass) and to naturally accumulate high levels of lipids and carotenoids, two biosynthetic pathways that can be leveraged to produce a wide range of bioproducts. While R. toruloides has great potential, it has a more limited set of tools for genetic engineering relative to more advanced yeast platform organisms such as Yarrowia lipolytica and Saccharomyces cerevisiae. Significant advancements in the past few years have bolstered R. toruloides’ engineering capacity. Here we expand this capacity by demonstrating the first use of CRISPR-Cas9-based gene disruption in R. toruloides. Transforming a Cas9 expression cassette harboring nourseothricin resistance and selecting transformants on this antibiotic resulted in strains of R. toruloides exhibiting successful targeted disruption of the native URA3 gene. While editing efficiencies were initially low (0.002%), optimization of the cassette increased efficiencies 364-fold (to 0.6%). Applying these optimized design conditions enabled disruption of another native gene involved in carotenoid biosynthesis, CAR2, with much greater success; editing efficiencies of CAR2 deletion reached roughly 50%. Finally, we demonstrated efficient multiplexed genome editing by disrupting both CAR2 and URA3 in a single transformation. Together, our results provide a framework for applying CRISPR-Cas9 to R. toruloides that will facilitate rapid and high-throughput genome engineering in this industrially relevant organism. IMPORTANCE Microbial biofuel and bioproduct platforms provide access to clean and renewable carbon sources that are more sustainable and environmentally friendly than petroleum-based carbon sources. Furthermore, they can serve as useful conduits for the synthesis of advanced molecules that are difficult to produce through strictly chemical means. R. toruloides has emerged as a promising potential host for converting renewable lignocellulosic material into valuable fuels and chemicals. However, engineering efforts to improve the yeast’s production capabilities have been impeded by a lack of advanced tools for genome engineering. While this is rapidly changing, one key tool remains unexplored in R. toruloides: CRISPR-Cas9. The results outlined here demonstrate for the first time how effective multiplexed CRISPR-Cas9 gene disruption provides a framework for other researchers to utilize this revolutionary genome-editing tool effectively in R. toruloides.


2014 ◽  
Vol 35 (1) ◽  
pp. 331-342 ◽  
Author(s):  
Emily Paul ◽  
Z. Iris Zhu ◽  
David Landsman ◽  
Randall H. Morse

Mediator is a large, multisubunit complex that is required for essentially all mRNA transcription in eukaryotes. In spite of the importance of Mediator, the range of its targets and how it is recruited to these is not well understood. Previous work showed that inSaccharomyces cerevisiae, Mediator contributes to transcriptional activation by two distinct mechanisms, one depending on the tail module triad and favoring SAGA-regulated genes, and the second occurring independently of the tail module and favoring TFIID-regulated genes. Here, we use chromatin immunoprecipitation sequencing (ChIP-seq) to show that dependence on tail module subunits for Mediator recruitment and polymerase II (Pol II) association occurs preferentially at SAGA-regulated over TFIID-regulated genes on a genome-wide scale. We also show that recruitment of tail module subunits to active gene promoters continues genome-wide when Mediator integrity is compromised inmed17temperature-sensitive (ts) yeast, demonstrating the modular nature of the Mediator complexin vivo. In addition, our data indicate that promoters exhibiting strong and stable occupancy by Mediator have a wide range of activity and are enriched for targets of the Tup1-Cyc8 repressor complex. We also identify a number of strong Mediator occupancy peaks that overlap dubious open reading frames (ORFs) and are likely to include previously unrecognized upstream activator sequences.


Sign in / Sign up

Export Citation Format

Share Document