scholarly journals Survival of Escherichia coli O157:H7 on Cattle Hides

2011 ◽  
Vol 77 (9) ◽  
pp. 3002-3008 ◽  
Author(s):  
Terrance M. Arthur ◽  
Xiangwu Nou ◽  
Norasak Kalchayanand ◽  
Joseph M. Bosilevac ◽  
Tommy Wheeler ◽  
...  

ABSTRACTThe objective of this study was to determine the time period thatEscherichia coliO157:H7 survives on the hides of cattle. Extensive research has been conducted and is ongoing to identify and develop novel preharvest intervention strategies to reduce the presence ofE. coliO157:H7 on live cattle and subsequent transfer to processed carcasses. If a reduction ofE. coliO157:H7 levels in feces can be achieved through preharvest intervention, it is not known how long it would take for such reductions to be seen on the hide. In the study presented herein, three trials were conducted to followE. coliO157:H7 hide prevalence over time. For each trial, 36 animals were housed in individual stanchions to minimize or prevent hide contamination events. Through prevalence determination and isolate genotyping with pulsed-field gel electrophoresis, survival ofE. coliO157:H7 on the hides of live cattle was determined to be short lived, with an approximate duration of 9 days or less. The results of this study suggest that any preharvest interventions that are to be administered at the end of the finishing period will achieve maximum effect in reducingE. coliO157:H7 levels on cattle hides if given 9 days before the cattle are presented for processing. However, it should be noted that interventions reducing pathogen shedding would also contribute to decreasing hide contamination through lowering the contamination load of the processing plant lairage environment, regardless of the time of application.

2013 ◽  
Vol 79 (13) ◽  
pp. 4154-4158 ◽  
Author(s):  
M. E. Jacob ◽  
D. M. Foster ◽  
A. T. Rogers ◽  
C. C. Balcomb ◽  
M. W. Sanderson

ABSTRACTWe determined the prevalences ofEscherichia coliO157:H7 in feces, hide, and carcasses of meat goats at a U.S. processing plant. Prevalences were 11.1%, 2.7%, and 2.7%, respectively. Sixteen pulsed-field gel electrophoresis (PFGE) subtypes were identified among 49E. coliO157:H7 isolates, some of which were present on multiple sample types or collection days.


2014 ◽  
Vol 81 (2) ◽  
pp. 713-725 ◽  
Author(s):  
John W. Schmidt ◽  
Getahun E. Agga ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Steven D. Shackelford ◽  
...  

ABSTRACTSpecific concerns have been raised that third-generation cephalosporin-resistant (3GCr)Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr)E. coli, 3GCrSalmonella enterica, and nalidixic acid-resistant (NALr)S. entericamay be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n= 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCrSalmonellawas detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALrS. entericawas detected on only one hide. 3GCrE. coliand COTrE. coliwere detected on 100.0% of hides during processing. Concentrations of 3GCrE. coliand COTrE. colion hides were correlated with pre-evisceration carcass contamination. 3GCrE. coliand COTrE. coliwere each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenicE. coli(ExPEC) virulence-associated markers. Only two COTrE. coliisolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


2018 ◽  
Vol 7 (18) ◽  
Author(s):  
Serajus Salaheen ◽  
Seon Woo Kim ◽  
Jeffrey S. Karns ◽  
Bradd J. Haley ◽  
Jo Ann S. Van Kessel

Cattle are primary reservoirs of Escherichia coli O157:H7, a causative agent of severe human infections. To facilitate analyses of the communities in which this pathogen is found, we sequenced the fecal metagenomes of 10 dairy cows shedding E. coli O157:H7 and added them to the public domain.


2016 ◽  
Vol 82 (17) ◽  
pp. 5455-5464 ◽  
Author(s):  
Stefanie A. Barth ◽  
Christian Menge ◽  
Inga Eichhorn ◽  
Torsten Semmler ◽  
Lothar H. Wieler ◽  
...  

ABSTRACTShiga toxin-producingEscherichia coli(STEC) strains can colonize cattle for several months and may, thus, serve as gene reservoirs for the genesis of highly virulent zoonotic enterohemorrhagicE. coli(EHEC). Attempts to reduce the human risk for acquiring EHEC infections should include strategies to control such STEC strains persisting in cattle. We therefore aimed to identify genetic patterns associated with the STEC colonization type in the bovine host. We included 88 persistent colonizing STEC (STECper) (shedding for ≥4 months) and 74 sporadically colonizing STEC (STECspo) (shedding for ≤2 months) isolates from cattle and 16 bovine STEC isolates with unknown colonization types. Genoserotypes and multilocus sequence types (MLSTs) were determined, and the isolates were probed with a DNA microarray for virulence-associated genes (VAGs). All STECperisolates belonged to only four genoserotypes (O26:H11, O156:H25, O165:H25, O182:H25), which formed three genetic clusters (ST21/396/1705, ST300/688, ST119). In contrast, STECspoisolates were scattered among 28 genoserotypes and 30 MLSTs, with O157:H7 (ST11) and O6:H49 (ST1079) being the most prevalent. The microarray analysis identified 139 unique gene patterns that clustered with the genoserotypes and MLSTs of the strains. While the STECperisolates possessed heterogeneous phylogenetic backgrounds, the accessory genome clustered these isolates together, separating them from the STECspoisolates. Given the vast genetic heterogeneity of bovine STEC strains, defining the genetic patterns distinguishing STECperfrom STECspoisolates will facilitate the targeted design of new intervention strategies to counteract these zoonotic pathogens at the farm level.IMPORTANCERuminants, especially cattle, are sources of food-borne infections by Shiga toxin-producingEscherichia coli(STEC) in humans. Some STEC strains persist in cattle for longer periods of time, while others are detected only sporadically. Persisting strains can serve as gene reservoirs that supplyE. coliwith virulence factors, thereby generating new outbreak strains. Attempts to reduce the human risk for acquiring STEC infections should therefore include strategies to control such persisting STEC strains. By analyzing representative genes of their core and accessory genomes, we show that bovine STEC with a persistent colonization type emerged independently from sporadically colonizing isolates and evolved in parallel evolutionary branches. However, persistent colonizing strains share similar sets of accessory genes. Defining the genetic patterns that distinguish persistent from sporadically colonizing STEC isolates will facilitate the targeted design of new intervention strategies to counteract these zoonotic pathogens at the farm level.


2013 ◽  
Vol 79 (6) ◽  
pp. 1813-1820 ◽  
Author(s):  
Joshua B. Gurtler ◽  
David D. Douds ◽  
Brian P. Dirks ◽  
Jennifer J. Quinlan ◽  
April M. Nicholson ◽  
...  

ABSTRACTA study was conducted to determine the influence of arbuscular mycorrhizal (AM) fungi onSalmonellaand enterohemorrhagicEscherichia coliO157:H7 (EHEC) in autoclaved soil and translocation into leek plants. Six-week-old leek plants (with [Myc+] or without [Myc−] AM fungi) were inoculated with composite suspensions ofSalmonellaor EHEC at ca. 8.2 log CFU/plant into soil. Soil, root, and shoot samples were analyzed for pathogens on days 1, 8, 15, and 22 postinoculation. Initial populations (day 1) were ca. 3.1 and 2.1 log CFU/root, ca. 2.0 and 1.5 log CFU/shoot, and ca. 5.5 and 5.1 CFU/g of soil forSalmonellaand EHEC, respectively. Enrichments indicated that at days 8 and 22, only 31% of root samples were positive for EHEC, versus 73% positive forSalmonella. The meanSalmonellalevel in soil was 3.4 log CFU/g at day 22, while EHEC populations dropped to ≤0.75 log CFU/g by day 15. Overall,Salmonellasurvived in a greater number of shoot, root, and soil samples, compared with the survival of EHEC. EHEC was not present in Myc− shoots after day 8 (0/16 samples positive); however, EHEC persisted in higher numbers (P= 0.05) in Myc+ shoots (4/16 positive) at days 15 and 22.Salmonella, likewise, survived in statistically higher numbers of Myc+ shoot samples (8/8) at day 8, compared with survival in Myc− shoots (i.e., only 4/8). These results suggest that AM fungi may potentially enhance the survival ofE. coliO157:H7 andSalmonellain the stems of growing leek plants.


2015 ◽  
Vol 81 (6) ◽  
pp. 2063-2074 ◽  
Author(s):  
Jitendra R. Patel ◽  
Irene Yossa ◽  
Dumitru Macarisin ◽  
Patricia Millner

ABSTRACTThis study investigated the effect of a 30-cm covering of finished compost (FC) on survival ofEscherichia coliO157:H7 andSalmonellaspp. in active static and windrow composting systems. Feedstocks inoculated withE. coliO157:H7 (7.41 log CFU/g) andSalmonella(6.46 log CFU/g) were placed in biosentry tubes (7.5-cm diameter, 30-cm height) at three locations: (i and ii) two opposing sides at the interface between the FC cover layer (where present) and the feedstock material (each positioned approximately 10 cm below the pile's surface) and (iii) an internal location (top) (approximately 30 cm below the surface). On specific sampling days, surviving populations of inoculatedE. coliO157:H7 andSalmonella, genericE. coli, and coliforms in compost samples were determined.Salmonellaspp. were reduced significantly within 24 h in windrow piles and were below the detection limit after 3 and 7 days at internal locations of windrow and static piles containing FC covering, respectively. Likewise,E. coliO157:H7 was undetectable after 1 day in windrow piles covered with finished compost. Use of FC as a covering layer significantly increased the number of days that temperatures in the windrows remained ≥55°C at all locations and in static piles at internal locations. These time-temperature exposures resulted in rapid reduction of inoculated pathogens, and the rate of bacterial reduction was rapid in windrow piles. The sample location significantly influenced the survival of these pathogens at internal locations compared to that at interface locations of piles. Finished compost covering of compost piles aids in the reduction of pathogens during the composting process.


2017 ◽  
Vol 80 (2) ◽  
pp. 302-311 ◽  
Author(s):  
Hao Pang ◽  
Elisabetta Lambertini ◽  
Robert L. Buchanan ◽  
Donald W. Schaffner ◽  
Abani K. Pradhan

ABSTRACT Leafy green vegetables, including lettuce, are recognized as potential vehicles for foodborne pathogens such as Escherichia coli O157:H7. Fresh-cut lettuce is potentially at high risk of causing foodborne illnesses, as it is generally consumed without cooking. Quantitative microbial risk assessments (QMRAs) are gaining more attention as an effective tool to assess and control potential risks associated with foodborne pathogens. This study developed a QMRA model for E. coli O157:H7 in fresh-cut lettuce and evaluated the effects of different potential intervention strategies on the reduction of public health risks. The fresh-cut lettuce production and supply chain was modeled from field production, with both irrigation water and soil as initial contamination sources, to consumption at home. The baseline model (with no interventions) predicted a mean probability of 1 illness per 10 million servings and a mean of 2,160 illness cases per year in the United States. All intervention strategies evaluated (chlorine, ultrasound and organic acid, irradiation, bacteriophage, and consumer washing) significantly reduced the estimated mean number of illness cases when compared with the baseline model prediction (from 11.4- to 17.9-fold reduction). Sensitivity analyses indicated that retail and home storage temperature were the most important factors affecting the predicted number of illness cases. The developed QMRA model provided a framework for estimating risk associated with consumption of E. coli O157:H7–contaminated fresh-cut lettuce and can guide the evaluation and development of intervention strategies aimed at reducing such risk.


2004 ◽  
Vol 67 (7) ◽  
pp. 1501-1506 ◽  
Author(s):  
GEORGE H. WEBER ◽  
JUDY K. O'BRIEN ◽  
FREDRIC G. BENDER

Three intervention strategies—trisodium phosphate, lactic acid, and sodium metasilicate—were examined for their in vitro antimicrobial activities in water at room temperature against a three-strain cocktail of Escherichia coli O157:H7 and a three-strain cocktail of “generic” E. coli. Both initial inhibition and recovery of injured cells were monitored. When 3.0% (wt/wt) lactic acid, pH 2.4, was inoculated with E. coli O157:H7 (approximately 6 log CFU/ml), viable microorganisms were recovered after a 20-min exposure to the acid. After 20 min in 1.0% (wt/wt) trisodium phosphate, pH 12.0, no viable E. coli O157:H7 microorganisms were detected. Exposure of E. coli O157:H7 to sodium metasilicate (5 to 10 s) at concentrations as low as 0.6%, pH 12.1, resulted in 100% inhibition with no recoverable E. coli O157:H7. No difference in inhibition profiles was detected between the E. coli O157:H7 and generic strains, suggesting that nonpathogenic strains may be used for in-plant sodium metasilicate studies.


2016 ◽  
Vol 82 (17) ◽  
pp. 5320-5331 ◽  
Author(s):  
Cathy L. Abberton ◽  
Ludmila Bereschenko ◽  
Paul W. J. J. van der Wielen ◽  
Cindy J. Smith

ABSTRACTEscherichia coliis the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is thatE. colibacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate ofE. coliin drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of threeE. colistrains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, withT90(time taken for a reduction in cell number of 1 log10unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA,tuf,uidA, androdAgenes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm−2; BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P> 0.05 byttest). Finally,E. coliregrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods forE. coli. The results of this work highlight that whenE. colienters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely.IMPORTANCEThe provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coliis used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key public health concern therefore arises around the fate ofE. colion entering a WDS; its survival, ability to form a biofilm, and potential for regrowth. In particular, ifE. colibacteria have the ability to incorporate and regrow within the pipe wall biofilm of a WDS, they could reinoculate the water at a later stage. This study sheds light on the fate of environmental and enteric strains ofE. coliin drinking water showing extended survival, the potential for biofilm formation under shear stress, and importantly, that regrowth in the presence of an indigenous microbial community is unlikely.


2008 ◽  
Vol 71 (9) ◽  
pp. 1752-1760 ◽  
Author(s):  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
DAYNA M. BRICHTA-HARHAY ◽  
NORASAK KALCHAYANAND ◽  
DAVID A. KING ◽  
...  

Transportation from the feedlot and lairage at the processing plant have been identified as potential sources of Escherichia coli O157:H7 and Salmonella hide contamination. The objective of this study was to perform a comprehensive tracking analysis of E. coli O157:H7 and Salmonella associated with beef cattle from the feedlot through processing. Cattle (n = 581) were sampled in a feedlot, then transported in multiple lots to three commercial, fed beef processing plants in the United States, where they were sampled again. Samples were collected from the tractor trailers prior to loading cattle and from the lairage environment spaces prior to entry of the study cattle. Pathogen prevalence on cattle hides increased on every lot of cattle between exiting the feedlot and beginning processing. Prior to loading cattle, E. coli O157:H7 was found in 9 (64%) of 14 tractor trailers. E. coli O157:H7 was detected in over 60% of the samples from each lairage environment area, while Salmonella was detected in over 70% of the samples from each lairage environment area. E. coli O157:H7 and Salmonella isolates (n 3,645) were analyzed using pulsed-field gel electrophoresis. The results of the pulsed-field gel electrophoresis tracking indicate that the transfer of bacteria onto cattle hides that occurs in the lairage environments of U.S beef processing plants accounts for a larger proportion of the hide and carcass contamination than does the initial bacterial population found on the cattle exiting the feedlot. Finally, the results of this study indicate that hide wash cabinets are effective in removing contamination derived from the lairage environment.


Sign in / Sign up

Export Citation Format

Share Document