scholarly journals Temperature-Dependent Expression of Listeria monocytogenes Internalin and Internalin-Like Genes Suggests Functional Diversity of These Proteins among the Listeriae

2007 ◽  
Vol 73 (9) ◽  
pp. 2806-2814 ◽  
Author(s):  
Patrick McGann ◽  
Renata Ivanek ◽  
Martin Wiedmann ◽  
Kathryn J. Boor

ABSTRACT The Listeria monocytogenes genome contains genes encoding several internalins and internalin-like proteins. As L. monocytogenes is present in many environments and can infect numerous, diverse host species, the environmental temperature was hypothesized to be a signal that might affect internalin gene transcription. A subgenomic microarray was used to investigate temperature-dependent transcription of 24 members of the internalin gene family in L. monocytogenes 10403S. The levels of internalin gene transcripts for cells grown at 37°C were compared to the levels of transcripts for cells grown at 16, 30, and 42°C using competitive microarray hybridization, and the results were confirmed by performing quantitative reverse transcriptase PCR for 14 internalin genes. Based on these studies, the internalin genes can be grouped into the following five temperature-dependent categories: (i) four σB-dependent internalin genes (inlC2, inlD, lmo0331, and lmo0610) with the highest levels of transcripts at 16°C and generally the lowest levels of transcripts at 37°C; (ii) three partially PrfA-dependent internalin genes (inlA, inlB, and inlC) with the lowest levels of transcripts at 16°C and the highest levels of transcripts at 37 and 42°C; (iii) four genes (inlG, inlJ, lmo0514, and lmo1290) with the lowest levels of transcripts at 16°C and the highest levels of transcripts at 30 and/or 37°C; (iv) one gene (lmo0327) with the highest levels of transcripts at 16°C and low levels of transcripts at higher temperatures; and (v) 12 internalin genes with no differences in the levels of transcripts at the temperatures used in this study. The temperature-dependent transcription patterns suggest that the relative importance of different internalins varies by environment, which may provide insight into the specific functions of these proteins.

2021 ◽  
Vol 19 (1) ◽  
pp. 44-57
Author(s):  
Sirine Werghi ◽  
Charfeddine Gharsallah ◽  
Nishi Kant Bhardwaj ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

AbstractDuring recent decades, global warming has intensified, altering crop growth, development and survival. To overcome changes in their environment, plants undergo transcriptional reprogramming to activate stress response strategies/pathways. To evaluate the genetic bases of the response to heat stress, Conserved DNA-derived Polymorphism (CDDP) markers were applied across tomato genome of eight cultivars. Despite scattered genotypes, cluster analysis allowed two neighbouring panels to be discriminate. Tomato CDDP-genotypic and visual phenotypic assortment permitted the selection of two contrasting heat-tolerant and heat-sensitive cultivars. Further analysis explored differential expression in transcript levels of genes, encoding heat shock transcription factors (HSFs, HsfA1, HsfA2, HsfB1), members of the heat shock protein (HSP) family (HSP101, HSP17, HSP90) and ascorbate peroxidase (APX) enzymes (APX1, APX2). Based on discriminating CDDP-markers, a protein functional network was built allowing prediction of candidate genes and their regulating miRNA. Expression patterns analysis revealed that miR156d and miR397 were heat-responsive showing a typical inverse relation with the abundance of their target gene transcripts. Heat stress is inducing a set of candidate genes, whose expression seems to be modulated through a complex regulatory network. Integrating genetic resource data is required for identifying valuable tomato genotypes that can be considered in marker-assisted breeding programmes to improve tomato heat tolerance.


2021 ◽  
Vol 9 (6) ◽  
pp. 1323
Author(s):  
Etai Boichis ◽  
Nadejda Sigal ◽  
Ilya Borovok ◽  
Anat A. Herskovits

Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm’s lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.


Author(s):  
Liping Sheng ◽  
Songda Li ◽  
Zhaoxia Ma ◽  
Fei Wang ◽  
Hu He ◽  
...  

O2 greatly affected the pathway for NO reduction over the Pd/CeO2 catalyst and resulted in a temperature-dependent NH3-SCR performance and formation of N2O.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2978
Author(s):  
Donghai Li ◽  
Cheng Pan ◽  
Jianjun Lu ◽  
Wajid Zaman ◽  
Huayan Zhao ◽  
...  

Lupeol, a natural lupane-type pentacyclic triterpene, possesses various pharmacological properties, and its production attracts attention. Significant quantities of lupeol are deposited on the castor aerial organ surface and are easily extractable as a predominant wax constituent. Thus, castor might be considered as a potential bioreactor for the production of lupeol. The lupeol biosynthesis pathway is well known, but how it is regulated remains largely unknown. Among large numbers of castor cultivars, we targeted one accession line (337) with high levels of lupeol on its stem surface and low levels thereof on its hypocotyl surface, implicating that lupeol synthesis is differentially regulated in the two organs. To explore the underlying mechanisms, we did comparative transcriptome analysis of the first internode of 337 stem and the upper hypocotyl. Our results show that large amounts of auxin-related genes are differentially expressed in both parts, implying some possible interactions between auxin and lupeol production. We also found that several auxin-responsive cis-elements are present in promoter regions of HMGR and LUS genes encoding two key enzymes involved in lupeol production. Furthermore, auxin treatments apparently induced the expression levels of RcHMGR and RcLUS. Furthermore, we observed that auxin treatment significantly increased lupeol contents, whereas inhibiting auxin transport led to an opposite phenotype. Our study reveals some relationships between hormone activity and lupeol synthesis and might provide a promising way for improving lupeol yields in castor.


1996 ◽  
Vol 135 (3) ◽  
pp. 647-660 ◽  
Author(s):  
G A Smith ◽  
J A Theriot ◽  
D A Portnoy

The ActA protein is responsible for the actin-based movement of Listeria monocytogenes in the cytosol of eukaryotic cells. Analysis of mutants in which we varied the number of proline-rich repeats (PRR; consensus sequence DFPPPPTDEEL) revealed a linear relationship between the number of PRRs and the rate of movement, with each repeat contributing approximately 2-3 microns/min. Mutants lacking all functional PRRs (generated by deletion or point mutation) moved at rates 30% of wild-type. Indirect immunofluorescence indicated that the PRRs were directly responsible for binding of vasodilator-stimulated phosphoprotein (VASP) and for the localization of profilin at the bacterial surface. The long repeats, which are interdigitated between the PRRs, increased the frequency with which actin-based motility occurred by a mechanism independent of the PRRs, VASP, and profilin. Lastly, a mutant which expressed low levels of ActA exhibited a phenotype indicative of a threshold; there was a very low percentage of moving bacteria, but when movement did occur, it was at wild-type rates. These results indicate that the ActA protein directs at least three separable events: (1) initiation of actin polymerization that is independent of the repeat region; (2) initiation of movement dependent on the long repeats and the amount of ActA; and (3) movement rate dependent on the PRRs.


2018 ◽  
Author(s):  
Yunqian Qiao ◽  
Jiao Wang ◽  
He Wang ◽  
Baozhong Chai ◽  
Chufeng Rao ◽  
...  

AbstractAeromonas salmonicidasubsp.salmonicida(A.s.s) is a major pathogen affecting fisheries worldwide. It is a well-known member of the pigmentedAeromonasspecies, which produces melanin at ≤ 22 °C. However, melanogenesis decreases as the culture temperature increases and is completely suppressed at 30-35 °C while bacterial growth is not affected. The mechanism and biological significance of this temperature-dependent melanogenesis are not clear. Heterologous expression of anA.s.s.4-hydroxyphenylpyruvate dioxygenase (HppD), the most crucial enzyme in the HGA-melanin synthesis pathway, results in thermosensitive pigmentation inEscherichia coli, suggesting that HppD plays a key role in this process. In the current study, we demonstrated that the extreme thermolability of HppD is responsible for the temperature-dependent melanization ofA.s.s.Substitutions in three residues, Ser18, Pro103, or Leu119 of HppD fromA.s.sincreases the thermolability of this enzyme and results in temperature-independent melanogenesis. Moreover, replacing the corresponding residues of HppD fromAeromonasmedia strain WS, which forms pigment independent of temperature, with those ofA.s.sHppD leads to thermosensitive melanogenesis. Structural analysis suggested that mutations at these sites, especially at position P103, can strengthen the secondary structure of HppD and greatly improve its thermal stability. In addition, we found that HppD sequences of allA.s.sisolates are identical and that two of the three residues are completely conserved withinA.s.sisolates, which clearly distinguishes these from otherAeromonasstrains. We suggest that this property represents an adaptive strategy to the psychrophilic lifestyle ofA.s.s.ImportanceAeromonas salmonicidasubsp.salmonicida(A.s.s) is the causative agent of furunculosis, a bacterial septicemia of cold water fish of theSalmonidaefamily. As it has a well-defined host range,A.s.shas become an ideal model to investigate the co-evolution of host and pathogen. For many pathogens, melanin production is associated with virulence. Although other species ofAeromonascan produce melanin,A.s.sis the only member of this genus that has been reported to exhibit temperature-dependent melanization. Here we demonstrate that thermosensitive melanogenesis inA.s.sstrains is due to the thermolability of 4-hydroxyphenylpyruvate dioxygenase (HppD). The strictly conservedhppDsequences amongA.s.sand the exclusive thermosensitive pigmentation of these strains might provide insight into the role of melanin in the adaptation to a particular host, and offer a novel molecular marker to readily differentiateA.s.sstrains from otherA. salmonicidasubspecies andAeromonasspecies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tereza Gelbicova ◽  
Martina Florianova ◽  
Lucie Hluchanova ◽  
Alžběta Kalova ◽  
Kristýna Korena ◽  
...  

Environmental adaptation of Listeria monocytogenes is a complex process involving various mechanisms that can contribute to their survival in the environment, further spreading throughout the food chain and the development of listeriosis. The aim of this study was to analyze whole-genome sequencing data in a set of 270 strains of L. monocytogenes derived from human listeriosis cases and food and environmental sources in order to compare the prevalence and type of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance. Most of the detected genes of cadmium (27.8%), arsenic (15.6%), and benzalkonium chloride (7.0%) resistance were located on mobile genetic elements, even in phylogenetically distant lineages I and II, which indicates the possibility of their horizontal spread. Although no differences were found in the prevalence of these genes between human and food strains, they have been detected sporadically in strains from the environment. Regarding cadmium resistance genes, cadA1C1_Tn5422 predominated, especially in clonal complexes (CCs) 121, 8, and 3 strains. At the same time, qacH_Tn6188-encoding benzalkonium chloride resistance was most frequently detected in the genome of CC121 strains. Genes encoding arsenic resistance were detected mainly in strains CC2 (located on the chromosomal island LGI2) and CC9 (carried on Tn554). The results indicated a relationship between the spread of genes encoding resistance to cadmium, arsenic, and benzalkonium chloride in certain serotypes and CCs and showed the need for a more extensive study of L. monocytogenes strains to better understand their ability to adapt to the food production environment.


2019 ◽  
Author(s):  
Cassandra K. Hayne ◽  
Casey A. Schmidt ◽  
A. Gregory Matera ◽  
Robin E. Stanley

ABSTRACTThe splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34, and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1’s role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.


2021 ◽  
pp. 2219-2229
Author(s):  
Prudence Mpundu ◽  
Allan Rabson Mbewe ◽  
John Bwalya Muma ◽  
Wizaso Mwasinga ◽  
Nawa Mukumbuta ◽  
...  

Background and Aim: Listeria monocytogenes in ready-to-eat (RTE) foods remains consistently under-reported globally. Nevertheless, several independent studies conducted to investigate have elucidated the prevalence and antibiotic resistance profiles of L. monocytogenes in RTE-associated foods and their antibiotic resistance profiles. Given the rapid increase in consumption of RTE foods of both animal and plant origin, it is imperative to know the prevalence deductive data focusing on how much of L. monocytogenes is present in RTE foods, which is critical for food safety managers and retailers to assess the possible risk posed to end-users. In addition, valuable insight and another angle to the depth of the problem, we conducted a systematic review and meta-analysis to synthesize available data regarding the prevalence of L. monocytogenes in RTE foods and antibiotic resistance profiles. Materials and Methods: We conducted a meta-analysis study of L. monocytogenes and antibiotic resistance to clinically relevant antibiotics to determine the extent of L. monocytogenes contamination in RTE foods and antibiotic resistance profiles. The primary search terms, also known as keywords used, were restricted to peer-reviewed and review articles, and databases, including Google Scholars, Science-Direct, and Scopus, were searched. The inclusion of articles meeting eligibility criteria published between 2010 and 2020 after title, abstract, and full article screening. Data analysis was performed at multiple stages using quantitative meta-analysis reviews. Results: L. monocytogenes pooled proportion/prevalence was highest in chicken products determined at (22%) followed by various but uncategorized RTE foods at 21%. Regarding antibiotic resistance, profiling's highest pooled prevalence resistance was observed in penicillin at 80% resistance, followed by cephalosporin at 47%. Conclusion: Within its limitations, this study has attempted to provide insight into the pooled proportion/prevalence of L. monocytogenes in RTE foods and the antibiotic resistance profile at the global level. Determining the proportion/ prevalence of L. monocytogenes in RTE foods across the globe and antibiotic resistance profile is essential for providing quality food and reducing public health problems due to unsuccessful treatment of foodborne illness. This study provides insight into the pooled prevalence of L. monocytogenes in RTE foods and the antibiotic resistance profile. The results of this study partly endeavored to help appropriate authorities strengthen their preventive measures on specific RTE foods that are most likely to be contaminated with L. monocytogenes and antibiotic resistance profiles.


Sign in / Sign up

Export Citation Format

Share Document