scholarly journals Few Highly Abundant Operational Taxonomic Units Dominate within Rumen Methanogenic Archaeal Species in New Zealand Sheep and Cattle

2014 ◽  
Vol 81 (3) ◽  
pp. 986-995 ◽  
Author(s):  
Henning Seedorf ◽  
Sandra Kittelmann ◽  
Peter H. Janssen

ABSTRACTSequencing and analyses of 16S rRNA gene amplicons were performed to estimate the composition of the rumen methanogen community in 252 samples from eight cohorts of sheep and cattle, separated into 16 different sample groups by diet, and to determine which methanogens are most prominent in the rumens of farmed New Zealand ruminants.Methanobacteriales(relative abundance ± standard deviation, 89.6% ± 9.8%) andMethanomassiliicoccales(10.4% ± 9.8%) were the two major orders and contributed 99.98% (±0.1%) to the rumen methanogen communities in the samples. Sequences fromMethanobacterialeswere almost entirely from only four different species (or clades of very closely related species). Each was detectable in at least 89% of the samples. These four species or clades were theMethanobrevibacter gottschalkiiclade andMethanobrevibacter ruminantiumclade with a mean abundance of 42.4% (±19.5% standard deviation) and 32.9% (±18.8%), respectively, andMethanosphaerasp. ISO3-F5 (8.2% ± 6.7%) andMethanosphaerasp. group5 (5.6% ± 5.7%). These four species or clades appeared to be primarily represented by only one or, in one case, two dominant sequence types per species or clade when the sequences were grouped into operational taxonomic units (OTUs) at 99% sequence identity. The mean relative abundance ofMethanomassiliicoccalesin the samples was relatively low but exceeded 40% in some of the treatment groups. Animal feed affected the apparent methanogen community structure of both orders, as evident from differences in relative abundances of the major OTUs in animals under different feeding regimens.

2011 ◽  
Vol 77 (16) ◽  
pp. 5682-5687 ◽  
Author(s):  
Erin E. King ◽  
Rachel P. Smith ◽  
Benoit St-Pierre ◽  
André-Denis G. Wright

ABSTRACTIn the dairy cattle industry, Holstein and Jersey are the breeds most commonly used for production. They differ in performance by various traits, such as body size, milk production, and milk composition. With increased concerns about the impact of agriculture on climate change, potential differences in other traits, such as methane emission, also need to be characterized further. Since methane is produced in the rumen by methanogenic archaea, we investigated whether the population structure of methanogen communities would differ between Holsteins and Jerseys. Breed-specific rumen methanogen 16S rRNA gene clone libraries were constructed from pooled PCR products obtained from lactating Holstein and Jersey cows, generating 180 and 185 clones, respectively. The combined 365 sequences were assigned to 55 species-level operational taxonomic units (OTUs). Twenty OTUs, representing 85% of the combined library sequences, were common to both breeds, while 23 OTUs (36 sequences) were found only in the Holstein library and 12 OTUs (18 sequences) were found only in the Jersey library, highlighting increased diversity in the Holstein library. Other differences included the observation that sequences with species-like sequence identity toMethanobrevibacter milleraewere represented more highly in the Jersey breed, whileMethanosphaera-related sequences and novel uncultured methanogen clones were more frequent in the Holstein library. In contrast, OTU sequences with species-level sequence identity toMethanobrevibacter ruminantiumwere represented similarly in both libraries. Since the sampled animals were from a single herd consisting of two breeds which were fed the same diet and maintained under the same environmental conditions, the differences we observed may be due to differences in host breed genetics.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Shinya Kageyama ◽  
Mikari Asakawa ◽  
Toru Takeshita ◽  
Yukari Ihara ◽  
Shunsuke Kanno ◽  
...  

ABSTRACTNewborns are constantly exposed to various microbes from birth; hence, diverse commensal bacteria colonize the oral cavity. However, how or when these bacteria construct a complex and stable ecosystem remains unclear. This prospective cohort study examined the temporal changes in bacterial diversity and composition in tongue microbiota during infancy. We longitudinally collected a total of 464 tongue swab samples from 8 infants (age of <6 months at baseline) for approximately 2 years. We also collected samples from 32 children (aged 0 to 2 years) and 73 adults (aged 20 to 29 years) cross-sectionally as control groups. Bacterial diversities and compositions were determined by 16S rRNA gene sequencing. The tongue bacterial diversity in infancy, measured as the number of observed operational taxonomic units (OTUs), rapidly increased and nearly reached the same level as that in adults by around 80 weeks. The overall tongue bacterial composition in the transitional phase, 80 to 120 weeks, was more similar to that of adults than to that of the early exponential phase (EEP), 10 to 29 weeks, according to analysis of similarities. Dominant OTUs in the EEP corresponding toStreptococcus perorisandStreptococcus lactariusexponentially decreased immediately after EEP, around 30 to 49 weeks, whereas several OTUs corresponding toGranulicatella adiacens,Actinomyces odontolyticus, andFusobacterium periodonticumreciprocally increased during the same period. These results suggest that a drastic compositional shift of tongue microbiota occurs before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years.IMPORTANCEEvaluating the development of oral microbiota during infancy is important for understanding the subsequent colonization of bacterial species and the process of formation of mature microbiota in the oral cavity. We examined tongue microbiota longitudinally collected from 8 infants and found that drastic compositional shifts in tongue microbiota occur before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years. These results may be helpful for preventing the development of various diseases associated with oral microbiota throughout life.


2011 ◽  
Vol 77 (14) ◽  
pp. 4924-4930 ◽  
Author(s):  
Max Kolton ◽  
Yael Meller Harel ◽  
Zohar Pasternak ◽  
Ellen R. Graber ◽  
Yigal Elad ◽  
...  

ABSTRACTAdding biochar to soil has environmental and agricultural potential due to its long-term carbon sequestration capacity and its ability to improve crop productivity. Recent studies have demonstrated that soil-applied biochar promotes the systemic resistance of plants to several prominent foliar pathogens. One potential mechanism for this phenomenon is root-associated microbial elicitors whose presence is somehow augmented in the biochar-amended soils. The objective of this study was to assess the effect of biochar amendment on the root-associated bacterial community composition of mature sweet pepper (Capsicum annuumL.) plants. Molecular fingerprinting (denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism) of 16S rRNA gene fragments showed a clear differentiation between the root-associated bacterial community structures of biochar-amended and control plants. The pyrosequencing of 16S rRNA amplicons from the rhizoplane of both treatments generated a total of 20,142 sequences, 92 to 95% of which were affiliated with theProteobacteria,Bacteroidetes,Actinobacteria, andFirmicutesphyla. The relative abundance of members of theBacteroidetesphylum increased from 12 to 30% as a result of biochar amendment, while that of theProteobacteriadecreased from 71 to 47%. TheBacteroidetes-affiliatedFlavobacteriumwas the strongest biochar-induced genus. The relative abundance of this group increased from 4.2% of total root-associated operational taxonomic units (OTUs) in control samples to 19.6% in biochar-amended samples. Additional biochar-induced genera included chitin and cellulose degraders (ChitinophagaandCellvibrio, respectively) and aromatic compound degraders (HydrogenophagaandDechloromonas). We hypothesize that these biochar-augmented genera may be at least partially responsible for the beneficial effect of biochar amendment on plant growth and viability.


2020 ◽  
Vol 86 (15) ◽  
Author(s):  
Christopher G. Theofel ◽  
Thomas R. Williams ◽  
Eduardo Gutierrez ◽  
Gordon R. Davidson ◽  
Michele Jay-Russell ◽  
...  

ABSTRACT Over a 2-year period, drag swabs of orchard soil surface and air, soil, and almond leaf samples were collected in an almond orchard adjacent to (35 m from the first row of trees) and downwind from a poultry operation and in two almond orchards (controls) that were surrounded by other orchards. Samples were evaluated for aerobic plate count, generic Escherichia coli, other coliforms, the presence of Salmonella, bacterial community structure (analyzed through sequencing of the 16S rRNA gene), and amounts of dry solids (dust) on leaf surfaces on trees 0, 60, and 120 m into each orchard. E. coli was isolated from 41 of 206 (20%) and 1 of 207 (0.48%) air samples in the almond-poultry and control orchards, respectively. Salmonella was not isolated from any of the 529 samples evaluated. On average, the amount of dry solids on leaves collected from trees closest to the poultry operation was more than 2-fold greater than from trees 120 m into the orchard or from any of the trees in the control orchards. Members of the family Staphylococcaceae—often associated with poultry—were, on average, significantly (P < 0.001) more abundant in the phyllosphere of trees closest to the poultry operation (10% of relative abundance) than in trees 120 m into the orchard (1.7% relative abundance) or from any of the trees in control orchards (0.41% relative abundance). Poultry-associated microorganisms from a commercial operation transferred a short distance into an adjacent downwind almond orchard. IMPORTANCE The movement of microorganisms, including foodborne pathogens, from animal operations into adjacent plant crop-growing environments is not well characterized. This study provides evidence that dust and bioaerosols moved from a commercial poultry operation a short distance downwind into an almond orchard and altered the microbiome recovered from the leaves. These data provide growers with information they can use to assess food safety risks on their property.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Catharina Vendl ◽  
Tiffanie Nelson ◽  
Belinda Ferrari ◽  
Torsten Thomas ◽  
Tracey Rogers

Abstract Background The analysis of blow microbiota has been proposed as a biomarker for respiratory health analysis in cetaceans. Yet, we lack crucial knowledge on the long-term stability of the blow microbiota and its potential changes during disease. Research in humans and mice have provided evidence that respiratory disease is accompanied by a shift in microbial communities of the airways. We investigate here the stability of the community composition of the blow microbiota for 13 captive bottlenose dolphins over eight months including both sick and healthy individuals. We used barcoded tag sequencing of the bacterial 16S rRNA gene. Four of the dolphins experienced distinct medical conditions and received systemic antimicrobial treatment during the study. Results We showed that each dolphin harboured a unique community of zero-radius operational taxonomic units (zOTUs) that was present throughout the entire sampling period (‘intra-core’). Although for most dolphins there was significant variation over time, overall the intra-core accounted for an average of 73% of relative abundance of the blow microbiota. In addition, the dolphins shared between 8 and 66 zOTUs on any of the sampling occasions (‘inter-core’), accounting for a relative abundance between 17 and 41% of any dolphin’s airway microbiota. The majority of the intra-core and all of the inter-core zOTUs in this study are commonly found in captive and free-ranging dolphins and have previously been reported from several different body sites. While we did not find a clear effect of microbial treatment on blow microbiota, age and sex of the dolphins did have such an effect. Conclusions The airways of dolphins were colonized by an individual intra-core ‘signature’ that varied in abundance relative to more temporary bacteria. We speculate that the intra-core bacteria interact with the immune response of the respiratory tract and support its function. This study provides the first evidence of individual-specific airway microbiota in cetaceans that is stable over eight months.


2016 ◽  
Vol 82 (16) ◽  
pp. 4921-4930 ◽  
Author(s):  
Geoffrey L. House ◽  
Saliya Ekanayake ◽  
Yang Ruan ◽  
Ursel M. E. Schütte ◽  
Wittaya Kaonongbua ◽  
...  

ABSTRACTArbuscular mycorrhizal (AM) fungi form mutualisms with plant roots that increase plant growth and shape plant communities. Each AM fungal cell contains a large amount of genetic diversity, but it is unclear if this diversity varies across evolutionary lineages. We found that sequence variation in the nuclear large-subunit (LSU) rRNA gene from 29 isolates representing 21 AM fungal species generally assorted into genus- and species-level clades, with the exception of species of the generaClaroideoglomusandEntrophospora. However, there were significant differences in the levels of sequence variation across the phylogeny and between genera, indicating that it is an evolutionarily constrained trait in AM fungi. These consistent patterns of sequence variation across both phylogenetic and taxonomic groups pose challenges to interpreting operational taxonomic units (OTUs) as approximations of species-level groups of AM fungi. We demonstrate that the OTUs produced by five sequence clustering methods using 97% or equivalent sequence similarity thresholds failed to match the expected species of AM fungi, although OTUs from AbundantOTU, CD-HIT-OTU, and CROP corresponded better to species than did OTUs from mothur or UPARSE. This lack of OTU-to-species correspondence resulted both from sequences of one species being split into multiple OTUs and from sequences of multiple species being lumped into the same OTU. The OTU richness therefore will not reliably correspond to the AM fungal species richness in environmental samples. Conservatively, this error can overestimate species richness by 4-fold or underestimate richness by one-half, and the direction of this error will depend on the genera represented in the sample.IMPORTANCEArbuscular mycorrhizal (AM) fungi form important mutualisms with the roots of most plant species. Individual AM fungi are genetically diverse, but it is unclear whether the level of this diversity differs among evolutionary lineages. We found that the amount of sequence variation in an rRNA gene that is commonly used to identify AM fungal species varied significantly between evolutionary groups that correspond to different genera, with the exception of two genera that are genetically indistinguishable from each other. When we clustered groups of similar sequences into operational taxonomic units (OTUs) using five different clustering methods, these patterns of sequence variation caused the number of OTUs to either over- or underestimate the actual number of AM fungal species, depending on the genus. Our results indicate that OTU-based inferences about AM fungal species composition from environmental sequences can be improved if they take these taxonomically structured patterns of sequence variation into account.


2019 ◽  
Vol 8 (47) ◽  
Author(s):  
David A. Wilkinson ◽  
Lynn E. Rogers ◽  
Ahmed Fayaz ◽  
Rukhshana N. Akhter ◽  
Patrick J. Biggs ◽  
...  

Draft genomes of five Campylobacter isolates recovered from New Zealand brushtail possums are described. Genome sizes ranged from 1.591 Mbp to 1.594 Mbp, with G+C contents of 29.9% to 29.95%. Comparison to Australian Campylobacter 16S rRNA gene sequences suggests that the species may be common to possums.


2017 ◽  
Vol 55 (11) ◽  
pp. 3242-3248 ◽  
Author(s):  
Trevor Anderson ◽  
Edward Coughlan ◽  
Anja Werno

ABSTRACTMycoplasma genitaliumhas been associated with infections of the genitourinary tract, and prevalence is secondary toChlamydia trachomatis. The clinical observation of increasing treatment failure indicating antibiotic resistance, especially in cases of recurrent urethritis, has been confirmed by molecular testing. Mutations in the 23S rRNA gene can cause macrolide resistance, and topoisomerase/gyrase mutations can cause fluoroquinolone resistance. In this study, 115M. genitaliumDNA-positive samples were analyzed. Eighty-nine (77.4%) samples had a 23S rRNA mutation present, and 26 (22.6%) were wild type (no resistance mutation). Fluoroquinolone mutation screening was performed on 86 (74.8%) of the 115 samples, of which 20 (23.3%) samples had a mutation or mutations associated with increased resistance. This study shows the increasing antibiotic resistance in New Zealand and the need for appropriate guidelines to treat at-risk patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248913
Author(s):  
Tersia Andrea Conradie ◽  
Karin Jacobs

The Acidobacteriota is ubiquitous and is considered as one of the major bacterial phyla in soils. The current taxonomic classifications of this phylum are divided into 15 class-level subdivisions (SDs), with only 5 of these SDs containing cultured and fully described species. Within the fynbos biome, the Acidobacteriota has been reported as one of the dominant bacterial phyla, with relative abundances ranging between 4–26%. However, none of these studies reported on the specific distribution and diversity of the Acidobacteriota within these soils. Therefore, in this study we aimed to first determine the relative abundance and diversity of the Acidobacteriota in three pristine fynbos nature reserve soils, and secondly, whether differences in the acidobacterial composition can be attributed to environmental factors, such as soil abiotic properties. A total of 27 soil samples were collected at three nature reserves, namely Jonkershoek, Hottentots Holland, and Kogelberg. The variable V4-V5 region of the 16S rRNA gene was sequenced using the Ion Torrent S5 platform. The mean relative abundance of the Acidobacteriota were 9.02% for Jonkershoek, 14.91% for Kogelberg, and most significantly (p<0.05), 18.42% for Hottentots Holland. A total of 33 acidobacterial operational taxonomic units (OTUs) were identified. The dominant subdivisions identified in all samples included SDs 1, 2, and 3. Significant differences were observed in the distribution and composition of these OTUs between nature reserves. The SD1 were negatively correlated to soil pH, hydrogen (H+), potassium (K+) and carbon (C). In contrast, SD2, was positively correlated to soil pH, phosphorus (P), and K+, and unclassified members of SD3 was positively correlated to H+, K, and C. This study is the first to report on the specific acidobacterial distribution in pristine fynbos soils in South Africa.


2021 ◽  
Vol 10 (19) ◽  
Author(s):  
Nikola Palevich ◽  
Paul H. Maclean ◽  
Luis Carvalho ◽  
Ruy Jauregui

ABSTRACT Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Lucilia sericata, collected from Ashhurst, New Zealand (May 2020). The two dominant genera among adult male and female L. sericata were Serratia and Morganella (phylum Proteobacteria), while the larvae were also dominated by the genera Lactobacillus, Carnobacterium, and Lactococcus (phylum Firmicutes).


Sign in / Sign up

Export Citation Format

Share Document