scholarly journals Dimethyl Adenosine Transferase (KsgA) Deficiency in Salmonella enterica Serovar Enteritidis Confers Susceptibility to High Osmolarity and Virulence Attenuation in Chickens

2013 ◽  
Vol 79 (24) ◽  
pp. 7857-7866 ◽  
Author(s):  
Kim Lam Chiok ◽  
Tarek Addwebi ◽  
Jean Guard ◽  
Devendra H. Shah

ABSTRACTDimethyl adenosine transferase (KsgA) performs diverse roles in bacteria, including ribosomal maturation and DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that aksgAmutation inSalmonella entericaserovar Enteritidis results in impaired invasiveness in human and avian epithelial cells. In this study, we tested the virulence of aksgAmutant (theksgA::Tn5mutant) ofS. Enteritidis in orally challenged 1-day-old chickens. TheksgA::Tn5mutant showed significantly reduced intestinal colonization and organ invasiveness in chickens compared to those of the wild-type (WT) parent. Phenotype microarray (PM) was employed to compare theksgA::Tn5mutant and its isogenic wild-type strain for 920 phenotypes at 28°C, 37°C, and 42°C. At chicken body temperature (42°C), theksgA::Tn5mutant showed significantly reduced respiratory activity with respect to a number of carbon, nitrogen, phosphate, sulfur, and peptide nitrogen nutrients. The greatest differences were observed in the osmolyte panel at concentrations of ≥6% NaCl at 37°C and 42°C. In contrast, no major differences were observed at 28°C. In independent growth assays, theksgA::Tn5mutant displayed a severe growth defect in high-osmolarity (6.5% NaCl) conditions in nutrient-rich (LB) and nutrient-limiting (M9 minimum salts) media at 42°C. Moreover, theksgA::Tn5mutant showed significantly reduced tolerance to oxidative stress, but its survival within macrophages was not impaired. UnlikeEscherichia coli, theksgA::Tn5mutant did not display a cold-sensitivity phenotype; however, it showed resistance to kasugamycin and increased susceptibility to chloramphenicol. To the best of our knowledge, this is the first report showing the role ofksgAinS. Enteritidis virulence in chickens, tolerance to high osmolarity, and altered susceptibility to kasugamycin and chloramphenicol.

2012 ◽  
Vol 78 (18) ◽  
pp. 6405-6412 ◽  
Author(s):  
Cesar A. Morales ◽  
Jean Guard ◽  
Roxana Sanchez-Ingunza ◽  
Devendra H. Shah ◽  
Mark Harrison

ABSTRACTSalmonella entericaserovar Enteritidis is one of a fewSalmonella entericaserotypes that has SEF14 fimbriae encoded by thesefoperon, which consists of 4 cotranscribed genes,sefABCD, regulated bysefR. A parental strain was used to construct asefDmutant and its complement, and all 3 strains were compared for gene expression, metabolic properties, and virulence characteristics in hens. Transcription ofsefDby wild type was suppressed at 42°C and absent for the mutant under conditions where the complemented mutant had 103times higher transcription. Growth of the complemented mutant was restricted in comparison to that of the mutant and wild type. Hens infected with the wild type and mutant showed decreased blood calcium and egg production, but infection with the complemented mutant did not. Thus, the absence ofsefDcorrelated with increased metabolic capacity and enhanced virulence of the pathogen. These results suggest that any contribution thatsefDmakes to egg contamination is either unknown or would be limited to early transmission from the environment to the host. Absence ofsefD, either through mutation or by suppression of transcription at the body temperature of the host, may contribute to the virulence ofSalmonella entericaby facilitating growth on a wide range of metabolites.


2011 ◽  
Vol 77 (21) ◽  
pp. 7740-7748 ◽  
Author(s):  
Lucía Yim ◽  
Laura Betancor ◽  
Arací Martínez ◽  
Clare Bryant ◽  
Duncan Maskell ◽  
...  

ABSTRACTSalmonellosis represents a worldwide health problem because it is one of the major causes of food-borne disease. Although motility is postulated as an importantSalmonellavirulence attribute, there is little information about variation in motility in natural isolates. Here we report the identification of a point mutation (T551 → G) inmotA, a gene essential for flagellar rotation, in severalSalmonella entericaserovar Enteritidis field isolates. This mutation results in bacteria that can biosynthesize structurally normal but paralyzed flagella and are impaired in their capacity to invade human intestinal epithelial cells. Introduction of a wild-type copy ofmotAinto one of these isolates restored both motility and cell invasiveness. ThemotAmutant triggered higher proinflammatory transcriptional responses than an aflagellate isolate in differentiated Caco-2 cells, suggesting that the paralyzed flagella are able to signal through pattern recognition receptors. A specific PCR was designed to screen for the T551 → G mutation in a collection of 266S. Enteritidis field isolates from a nationwide epidemic, comprising 194 from humans and 72 from other sources. We found that 72 of the 266 (27%) isolates were nonmotile, including 24.7% (48/194) of human and 33.3% (24/72) of food isolates. Among nonmotile isolates, 15 carried the T551 → G mutation and, significantly, 13 were recovered from food, including 7 from eggs, but only 2 were from human sources. These results suggest that the presence of paralyzed flagella may impair the ability ofS. Enteritidis to cause disease in the human host but does not prevent its ability to colonize chickens and infect eggs.


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Melina B. Cian ◽  
Nicole P. Giordano ◽  
Revathi Masilamani ◽  
Keaton E. Minor ◽  
Zachary D. Dalebroux

ABSTRACT Salmonella enterica serovar Typhimurium (S. Typhimurium) relies upon the inner membrane protein PbgA to enhance outer membrane (OM) integrity and promote virulence in mice. The PbgA transmembrane domain (residues 1 to 190) is essential for viability, while the periplasmic domain (residues 191 to 586) is dispensable. Residues within the basic region (residues 191 to 245) bind acidic phosphates on polar phospholipids, like for cardiolipins, and are necessary for salmonella OM integrity. S. Typhimurium bacteria increase their OM cardiolipin concentrations during activation of the PhoPQ regulators. The mechanism involves PbgA’s periplasmic globular region (residues 245 to 586), but the biological role of increasing cardiolipins on the surface is not understood. Nonsynonymous polymorphisms in three essential lipopolysaccharide (LPS) synthesis regulators, lapB (also known as yciM), ftsH, and lpxC, variably suppressed the defects in OM integrity, rifampin resistance, survival in macrophages, and systemic colonization of mice in the pbgAΔ191–586 mutant (in which the PbgA periplasmic domain from residues 191 to 586 is deleted). Compared to the OMs of the wild-type salmonellae, the OMs of the pbgA mutants had increased levels of lipid A-core molecules, cardiolipins, and phosphatidylethanolamines and decreased levels of specific phospholipids with cyclopropanated fatty acids. Complementation and substitution mutations in LapB and LpxC generally restored the phospholipid and LPS assembly defects for the pbgA mutants. During bacteremia, mice infected with the pbgA mutants survived and cleared the bacteria, while animals infected with wild-type salmonellae succumbed within 1 week. Remarkably, wild-type mice survived asymptomatically with pbgA-lpxC salmonellae in their livers and spleens for months, but Toll-like receptor 4-deficient animals succumbed to these infections within roughly 1 week. In summary, S. Typhimurium uses PbgA to influence LPS assembly during stress in order to survive, adapt, and proliferate within the host environment.


2005 ◽  
Vol 71 (8) ◽  
pp. 4388-4399 ◽  
Author(s):  
Cesar A. Morales ◽  
Steffen Porwollik ◽  
Jonathan G. Frye ◽  
Hailu Kinde ◽  
Michael McClelland ◽  
...  

ABSTRACT The genotype of Salmonella enterica serovar Enteritidis was correlated with the phenotype using DNA-DNA microarray hybridization, ribotyping, and Phenotype MicroArray analysis to compare three strains that differed in colony morphology and phage type. No DNA hybridization differences were found between two phage type 13A (PT13A) strains that varied in biofilm formation; however, the ribotype patterns were different. Both PT13A strains had DNA sequences similar to that of bacteriophage Fels2, whereas the PT4 genome to which they were compared, as well as a PT4 field isolate, had a DNA sequence with some similarity to the bacteriophage ST64b sequence. Phenotype MicroArray analysis indicated that the two PT13A strains and the PT4 field isolate had similar respiratory activity profiles at 37°C. However, the wild-type S. enterica serovar Enteritidis PT13A strain grew significantly better in 20% more of the 1,920 conditions tested when it was assayed at 25°C than the biofilm-forming PT13A strain grew. Statistical analysis of the respiratory activity suggested that S. enterica serovar Enteritidis PT4 had a temperature-influenced dimorphic metabolism which at 25°C somewhat resembled the profile of the biofilm-forming PT13A strain and that at 37°C the metabolism was nearly identical to that of the wild-type PT13A strain. Although it is possible that lysogenic bacteriophage alter the balance of phage types on a farm either by lytic competition or by altering the metabolic processes of the host cell in subtle ways, the different physiologies of the S. enterica serovar Enteritidis strains correlated most closely with minor, rather than major, genomic changes. These results strongly suggest that the pandemic of egg-associated human salmonellosis that came into prominence in the 1980s is primarily an example of bacterial adaptive radiation that affects the safety of the food supply.


2019 ◽  
Vol 87 (11) ◽  
Author(s):  
Jingjun Lin ◽  
Gee W. Lau

ABSTRACT Streptococcus pneumoniae (pneumococcus) causes multiple infectious diseases. The pneumococcal competence system facilitates genetic transformation, spreads antibiotic resistance, and contributes to virulence. DNA-processing protein A (DprA) regulates the exit of pneumococcus from the competent state. Previously, we have shown that DprA is important in both bacteremia and pneumonia infections. Here, we examined the mechanisms of virulence attenuation in a ΔdprA mutant. Compared to the parental wild-type D39, the ΔdprA mutant enters the competent state when exposed to lower concentrations of the competence-stimulating peptide CSP1. The ΔdprA mutant overexpresses ComM, which delays cell separation after division. Additionally, the ΔdprA mutant overexpresses allolytic factors LytA, CbpD, and CibAB and is more susceptible to detergent-triggered lysis. Disabling of the competent-state-specific induction of ComM and allolytic factors compensated for the virulence loss in the ΔdprA mutant, suggesting that overexpression of these factors contributes to virulence attenuation. Finally, the ΔdprA mutant fails to downregulate the expression of multiple competence-regulated genes, leading to the excessive energy consumption. Collectively, these results indicate that an inability to properly exit the competent state disrupts multiple cellular processes that cause virulence attenuation in the ΔdprA mutant.


2017 ◽  
Vol 84 (5) ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Natasha Butz ◽  
Maria Belen Cadenas ◽  
Matthew Koci ◽  
Anne Ballou ◽  
...  

ABSTRACT Salmonella is estimated to cause one million foodborne illnesses in the United States every year. Salmonella -contaminated poultry products are one of the major sources of salmonellosis. Given the critical role of the gut microbiota in Salmonella transmission, a manipulation of the chicken intestinal microenvironment could prevent animal colonization by the pathogen. In Salmonella , the global regulator gene fnr ( f umarate n itrate r eduction) regulates anaerobic metabolism and is essential for adapting to the gut environment. This study tested the hypothesis that an attenuated Fnr mutant of Salmonella enterica serovar Typhimurium (attST) or prebiotic galacto-oligosaccharides (GOS) could improve resistance to wild-type Salmonella via modifications to the structure of the chicken gut microbiome. Intestinal samples from a total of 273 animals were collected weekly for 9 weeks to evaluate the impact of attST or prebiotic supplementation on microbial species of the cecum, duodenum, jejunum, and ileum. We next analyzed changes to the gut microbiome induced by challenging the animals with a wild-type Salmonella serovar 4,[5],12:r:− (Nal r ) strain and determined the clearance rate of the virulent strain in the treated and control groups. Both GOS and the attenuated Salmonella strain modified the gut microbiome but elicited alterations of different taxonomic groups. The attST produced significant increases of Alistipes and undefined Lactobacillus , while GOS increased Christensenellaceae and Lactobacillus reuteri . The microbiome structural changes induced by both treatments resulted in a faster clearance after a Salmonella challenge. IMPORTANCE With an average annual incidence of 13.1 cases/100,000 individuals, salmonellosis has been deemed a nationally notifiable condition in the United States by the Centers for Disease Control and Prevention (CDC). Earlier studies demonstrated that Salmonella is transmitted by a subset of animals (supershedders). The supershedder phenotype can be induced by antibiotics, ascertaining an essential role for the gut microbiota in Salmonella transmission. Consequently, modulation of the gut microbiota and modification of the intestinal microenvironment could assist in preventing animal colonization by the pathogen. Our study demonstrated that a manipulation of the chicken gut microbiota by the administration of an attenuated Salmonella strain or prebiotic galacto-oligosaccharides (GOS) can promote resistance to Salmonella colonization via increases of beneficial microorganisms that translate into a less hospitable gut microenvironment.


2011 ◽  
Vol 56 (1) ◽  
pp. 248-257 ◽  
Author(s):  
Sara J. Blosser ◽  
Robert A. Cramer

ABSTRACTAs triazole antifungal drug resistance during invasiveAspergillus fumigatusinfection has become more prevalent, the need to understand mechanisms of resistance inA. fumigatushas increased. The presence of twoerg11(cyp51) genes inAspergillusspp. is hypothesized to account for the inherent resistance of this mold to the triazole fluconazole (FLC). Recently, anA. fumigatusnull mutant of a transcriptional regulator in the sterol regulatory element binding protein (SREBP) family, the ΔsrbAstrain, was found to have increased susceptibility to FLC and voriconazole (VCZ). In this study, we examined the mechanism engendering the observed increase inA. fumigatustriazole susceptibility in the absence of SrbA. We observed a significant reduction in theerg11Atranscript in the ΔsrbAstrain in response to FLC and VCZ. Transcript levels oferg11Bwere also reduced but not to the extent oferg11A. Interestingly,erg11Atranscript levels increased upon extended VCZ, but not FLC, exposure. Construction of anerg11Aconditional expression strain in the ΔsrbAstrain was able to restoreerg11Atranscript levels and, consequently, wild-type MICs to the triazole FLC. The VCZ MIC was also partially restored upon increasederg11Atranscript levels; however, total ergosterol levels remained significantly reduced compared to those of the wild type. Induction of theerg11Aconditional strain did not restore the hypoxia growth defect of the ΔsrbAstrain. Taken together, our results demonstrate a critical role for SrbA-mediated regulation of ergosterol biosynthesis and triazole drug interactions inA. fumigatusthat may have clinical importance.


2009 ◽  
Vol 77 (7) ◽  
pp. 2866-2875 ◽  
Author(s):  
Taseen S. Desin ◽  
Po-King S. Lam ◽  
Birgit Koch ◽  
Claudia Mickael ◽  
Emil Berberov ◽  
...  

ABSTRACT Salmonella enterica subsp. enterica serovar Enteritidis is a leading cause of human food-borne illness that is mainly associated with the consumption of contaminated poultry meat and eggs. To cause infection, S. Enteritidis is known to use two type III secretion systems, which are encoded on two salmonella pathogenicity islands, SPI-1 and SPI-2, the first of which is thought to play a major role in invasion and bacterial uptake. In order to study the role of SPI-1 in the colonization of chicken, we constructed deletion mutants affecting the complete SPI-1 region (40 kb) and the invG gene. Both ΔSPI-1 and ΔinvG mutant strains were impaired in the secretion of SipD, a SPI-1 effector protein. In vitro analysis using polarized human intestinal epithelial cells (Caco-2) revealed that both mutant strains were less invasive than the wild-type strain. A similar observation was made when chicken cecal and small intestinal explants were coinfected with the wild-type and ΔSPI-1 mutant strains. Oral challenge of 1-week-old chicken with the wild-type or ΔSPI-1 strains demonstrated that there was no difference in chicken cecal colonization. However, systemic infection of the liver and spleen was delayed in birds that were challenged with the ΔSPI-1 strain. These data demonstrate that SPI-1 facilitates systemic infection but is not essential for invasion and systemic spread of the organism in chickens.


2011 ◽  
Vol 79 (10) ◽  
pp. 4175-4185 ◽  
Author(s):  
Sharon M. Tennant ◽  
Jin-Yuan Wang ◽  
James E. Galen ◽  
Raphael Simon ◽  
Marcela F. Pasetti ◽  
...  

ABSTRACTWhile nontyphoidalSalmonella(NTS) has long been recognized as a cause of self-limited gastroenteritis, it is becoming increasingly evident that multiple-antibiotic-resistant strains are also emerging as important causes of invasive bacteremia and focal infections, resulting in hospitalizations and deaths. We have constructed attenuatedSalmonella entericaserovar Typhimurium andSalmonella entericaserovar Enteritidis strains that can serve as live oral vaccines and as “reagent strains” for subunit vaccine production in a safe and economical manner. Prototype attenuated vaccine strains CVD 1921 and CVD 1941, derived from the invasive wild-type strainsS. TyphimuriumI77 andS. EnteritidisR11, respectively, were constructed by deletingguaBA, encoding guanine biosynthesis, andclpP, encoding a master protease regulator. TheclpPmutation resulted in a hyperflagellation phenotype. An additional deletion infliDyielded reagent strains CVD 1923 and CVD 1943, respectively, which export flagellin monomers. Oral 50% lethal dose (LD50) analyses showed that the NTS vaccine strains were all highly attenuated in mice. Oral immunization with CVD 1921 or CVD 1923 protected mice against lethal challenge with wild-typeS. TyphimuriumI77. Immunization with CVD 1941 but not CVD 1943 protected mice against lethal infection withS. EnteritidisR11. Immune responses induced by these strains included high levels of serum IgG anti-lipopolysaccharide (LPS) and anti-flagellum antibodies, with titers increasing progressively during the immunization schedule. SinceS. TyphimuriumandS. Enteritidisare the most common NTS serovars associated with invasive disease, these findings can pave the way for development of a highly effective, broad-spectrum vaccine against invasive NTS.


2011 ◽  
Vol 79 (7) ◽  
pp. 2829-2838 ◽  
Author(s):  
Meghan A. Kirksey ◽  
Anna D. Tischler ◽  
Roxane Siméone ◽  
Katherine B. Hisert ◽  
Swapna Uplekar ◽  
...  

ABSTRACTOnset of the adaptive immune response in mice infected withMycobacterium tuberculosisis accompanied by slowing of bacterial replication and establishment of a chronic infection. Stabilization of bacterial numbers during the chronic phase of infection is dependent on the activity of the gamma interferon (IFN-γ)-inducible nitric oxide synthase (NOS2). Previously, we described a differential signature-tagged mutagenesis screen designed to identifyM. tuberculosis“counterimmune” mechanisms and reported the isolation of three mutants in the H37Rv strain background containing transposon insertions in therv0072,rv0405, andrv2958cgenes. These mutants were impaired for replication and virulence in NOS2−/−mice but were growth-proficient and virulent in IFN-γ−/−mice, suggesting that the disrupted genes were required for bacterial resistance to an IFN-γ-dependent immune mechanism other than NOS2. Here, we report that the attenuation of these strains is attributable to an underlying transposon-independent deficiency in biosynthesis of phthiocerol dimycocerosate (PDIM), a cell wall lipid that is required for full virulence in mice. We performed whole-genome resequencing of a PDIM-deficient clone and identified a spontaneous point mutation in the putative polyketide synthase PpsD that results in a G44C amino acid substitution. We demonstrate by complementation with the wild-typeppsDgene and reversion of theppsDgene to the wild-type sequence that theppsD(G44C) point mutation is responsible for PDIM deficiency, virulence attenuation in NOS2−/−and wild-type C57BL/6 mice, and a growth advantagein vitroin liquid culture. We conclude that PDIM biosynthesis is required forM. tuberculosisresistance to an IFN-γ-mediated immune response that is independent of NOS2.


Sign in / Sign up

Export Citation Format

Share Document