scholarly journals Novel Reporter for Identification of Interference with Acyl Homoserine Lactone and Autoinducer-2 Quorum Sensing

2014 ◽  
Vol 81 (4) ◽  
pp. 1477-1489 ◽  
Author(s):  
Nancy Weiland-Bräuer ◽  
Nicole Pinnow ◽  
Ruth A. Schmitz

ABSTRACTTwo reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of theseEscherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, theseE. colistrains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained theE. coliccdBlethal gene under the control of theE. colilsrApromoter. The second reporter strain (AI1-QQ.1) contained theVibrio fischeriluxIpromoter fused to theccdBgene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum-quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacteriumsp.,Pseudoalteromonassp., andVibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes.

2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Franziska S. Birmes ◽  
Ruth Säring ◽  
Miriam C. Hauke ◽  
Niklas H. Ritzmann ◽  
Steffen L. Drees ◽  
...  

ABSTRACT The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Samantha Wellington ◽  
E. Peter Greenberg

ABSTRACTMany species of proteobacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). Most AHL receptors are thought to be specific for their cognate signal, ensuring that bacteria cooperate and share resources only with closely related kin cells. Although specificity is considered fundamental to QS, there are reports of “promiscuous” receptors that respond broadly to nonself signals. These promiscuous responses expand the function of QS systems to include interspecies interactions and have been implicated in both interspecies competition and cooperation. Because bacteria are frequently members of polymicrobial communities, AHL cross talk between species could have profound impacts. To better understand the prevalence of QS promiscuity, we measured the activity of seven QS receptors in their native host organisms. To facilitate comparison of our results to previous studies, we also measured receptor activity using heterologous expression inEscherichia coli. We found that the standardE. colimethods consistently overestimate receptor promiscuity and sensitivity and that overexpression of the receptors is sufficient to account for the discrepancy between native andE. colireporters. Additionally, receptor overexpression resulted in AHL-independent activity inPseudomonas aeruginosa. Using our activation data, we developed a quantitative score of receptor selectivity. We find that the receptors display a wide range of selectivity and that most receptors respond sensitively and strongly to at least one nonself signal, suggesting a broad potential for cross talk between QS systems.IMPORTANCESpecific recognition of cognate signals is considered fundamental to cell signaling circuits as it creates fidelity in the communication system. In bacterial quorum sensing (QS), receptor specificity ensures that bacteria cooperate only with kin. There are examples, however, of QS receptors that respond promiscuously to multiple signals. “Eavesdropping” by these promiscuous receptors can be beneficial in both interspecies competition and cooperation. Despite their potential significance, we know little about the prevalence of promiscuous QS receptors. Further, many studies rely on methods requiring receptor overexpression, which is known to increase apparent promiscuity. By systematically studying QS receptors in their natural parent strains, we find that the receptors display a wide range of selectivity and that there is potential for significant cross talk between QS systems. Our results provide a basis for hypotheses about the evolution and function of promiscuous signal receptors and for predictions about interspecies interactions in complex microbial communities.


2004 ◽  
Vol 186 (3) ◽  
pp. 631-637 ◽  
Author(s):  
M. L. Urbanowski ◽  
C. P. Lostroh ◽  
E. P. Greenberg

ABSTRACT The Vibrio fischeri LuxR protein is the founding member of a family of acyl-homoserine lactone-responsive quorum-sensing transcription factors. Previous genetic evidence indicates that in the presence of its quorum-sensing signal, N-(3-oxohexanoyl) homoserine lactone (3OC6-HSL), LuxR binds to lux box DNA within the promoter region of the luxI gene and activates transcription of the luxICDABEG luminescence operon. We have purified LuxR from recombinant Escherichia coli. Purified LuxR binds specifically and with high affinity to DNA containing a lux box. This binding requires addition of 3OC6-HSL to the assay reactions, presumably forming a LuxR-3OC6-HSL complex. When bound to the lux box at the luxI promoter in vitro, LuxR-3OC6-HSL enables E. coli RNA polymerase to initiate transcription from the luxI promoter. Unlike the well-characterized LuxR homolog TraR in complex with its signal (3-oxo-octanoyl-HSL), the LuxR-30C6-HSL complex can be reversibly inactivated by dilution, suggesting that 3OC6-HSL in the complex is not tightly bound and is in equilibrium with the bulk solvent. Thus, although LuxR and TraR both bind 3-oxoacyl-HSLs, the binding is qualitatively different. The differences have implications for the ways in which these proteins respond to decreases in signal concentrations or rapid drops in population density.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Leanid Laganenka ◽  
Remy Colin ◽  
Victor Sourjik

Abstract Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour—autoaggregation—of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell–cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation.


2013 ◽  
Vol 57 (8) ◽  
pp. 4031-4034 ◽  
Author(s):  
Yee Gyung Kwak ◽  
George A. Jacoby ◽  
David C. Hooper

ABSTRACTNaturally occurring quinolone and quinolone-like compounds, such as quinine, 2-hydroxyquinoline, 4-hydroxyquinoline, and 2-heptyl-3-hydroxy-4(1H)-quinolone, increased expression ofqnrS1inEscherichia coli2.3- to 11.2-fold, similar to the synthetic quinolone ciprofloxacin. In contrast, chromosomalqnrVS1ofVibrio splendiduswas not induced by these compounds. Molecules associated with quorum sensing, such asN-3-hydroxybutyryl-homoserine lactone (HSL),N-hexanoyl-HSL, andN-3-(oxododecanoyl)-HSL, did not show an induction effect on eitherqnrS1orqnrVS1at the tested concentrations.


2006 ◽  
Vol 74 (3) ◽  
pp. 1673-1682 ◽  
Author(s):  
Charles F. Sio ◽  
Linda G. Otten ◽  
Robbert H. Cool ◽  
Stephen P. Diggle ◽  
Peter G. Braun ◽  
...  

ABSTRACT The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent quorum-sensing signal molecules. Analysis showed that the posttranslational processing of the acylase and the hydrolysis reaction type are similar to those of the beta-lactam acylases, strongly suggesting that the PA2385 protein is a member of the N-terminal nucleophile hydrolase superfamily. In a bioassay, the purified acylase was shown to degrade AHLs with side chains ranging in length from 11 to 14 carbons at physiologically relevant low concentrations. The substituent at the 3′ position of the side chain did not affect activity, indicating broad-range AHL quorum-quenching activity. Of the two main AHL signal molecules of P. aeruginosa PAO1, N-butanoyl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), only 3-oxo-C12-HSL is degraded by the enzyme. Addition of the purified protein to P. aeruginosa PAO1 cultures completely inhibited accumulation of 3-oxo-C12-HSL and production of the signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and reduced production of the virulence factors elastase and pyocyanin. Similar results were obtained when the PA2385 gene was overexpressed in P. aeruginosa. These results demonstrate that the protein has in situ quorum-quenching activity. The quorum-quenching AHL acylase may enable P. aeruginosa PAO1 to modulate its own quorum-sensing-dependent pathogenic potential and, moreover, offers possibilities for novel antipseudomonal therapies.


2012 ◽  
Vol 57 (1) ◽  
pp. 569-578 ◽  
Author(s):  
Moayad Alhariri ◽  
Abdelwahab Omri

ABSTRACTWe sought to investigate alterations in quorum-sensing signal moleculeN-acyl homoserine lactone secretion and in the release ofPseudomonas aeruginosavirulence factors, as well as thein vivoantimicrobial activity of bismuth-ethanedithiol incorporated into a liposome-loaded tobramycin formulation (LipoBiEDT-TOB) administered to rats chronically infected withP. aeruginosa. The quorum-sensing signal moleculeN-acyl homoserine lactone was monitored by using a biosensor organism.P. aeruginosavirulence factors were assessed spectrophotometrically. An agar beads model of chronicPseudomonaslung infection in rats was used to evaluate the efficacy of the liposomal formulation in the reduction of bacterial count. The levels of active tobramycin in the lungs and the kidneys were evaluated by microbiological assay. LipoBiEDT-TOB was effective in disrupting both quorum-sensing signal moleculesN-3-oxo-dodeccanoylhomoserine lactone andN-butanoylhomoserine lactone, as well as significantly (P< 0.05) reducing lipase, chitinase, and protease production. At 24 h after 3 treatments, the CFU counts in lungs of animals treated with LipoBiEDT-TOB were of 3 log10CFU/lung, comparated to 7.4 and 4.7 log10CFU/lung, respectively, in untreated lungs and in lungs treated with free antibiotic. The antibiotic concentration after the last dose of LipoBiEDT-TOB was 25.1 μg/lung, while no tobramycin was detected in the kidneys. As for the free antibiotic, we found 6.5 μg/kidney but could not detect any tobramycin in the lungs. Taken together, LipoBiEDT-TOB reduced the production of quorum-sensing molecules and virulence factors and could highly improve the management of chronic pulmonary infection in cystic fibrosis patients.


2009 ◽  
Vol 56 (1) ◽  
Author(s):  
Robert Czajkowski ◽  
Sylwia Jafra

Many Gram-positive and Gram-negative bacteria communicate using small diffusible signal molecules called autoinducers. This process, known as quorum sensing (QS), links cell density to the expression of genes as diverse as those associated with virulence factors production of plant and animal pathogens, bioluminescence, antibiotic production, sporulation or biofilm formation. In Gram-negative bacteria, this communication is mainly mediated by N-acyl-homoserine lactones (AHLs). It has been proven that inactivation of the signal molecules attenuates many of the processes controlled by QS. Enzymatic degradation of the signal molecules has been amply described. Two main classes of AHL-inactivating enzymes were identified: AHL lactonases which hydrolyse the lactone ring in AHLs, and AHL acylases (syn. AHL amidases) which liberate a free homoserine lactone and a fatty acid. Recently, AHL oxidoreductase, a novel type of AHL inactivating enzyme, was described. The activity of these enzymes results in silencing the QS-regulated processes, as degradation products cannot act as signal molecules. The ability to inactivate AHL (quorum quenching, QQ) might be useful in controlling virulence of many pathogenic bacteria.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Rita S. Valente ◽  
Pol Nadal-Jimenez ◽  
André F. P. Carvalho ◽  
Filipe J. D. Vieira ◽  
Karina B. Xavier

ABSTRACT Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks—the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway—control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources. IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae. This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways. IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae. This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Amin Zargar ◽  
David N. Quan ◽  
Karen K. Carter ◽  
Min Guo ◽  
Herman O. Sintim ◽  
...  

ABSTRACTThere have been many studies on the relationship between nonpathogenic bacteria and human epithelial cells; however, the bidirectional effects of the secretomes (secreted substances in which there is no direct bacterium-cell contact) have yet to be fully investigated. In this study, we use a transwell model to explore the transcriptomic effects of bacterial secretions from two different nonpathogenicEscherichia colistrains on the human colonic cell line HCT-8 using next-generation transcriptome sequencing (RNA-Seq).E. coliBL21 and W3110, while genetically very similar (99.1% homology), exhibit key phenotypic differences, including differences in their production of macromolecular structures (e.g., flagella and lipopolysaccharide) and in their secretion of metabolic byproducts (e.g., acetate) and signaling molecules (e.g., quorum-sensing autoinducer 2 [AI-2]). After analysis of differential epithelial responses to the respective secretomes, this study shows for the first time that a nonpathogenic bacterial secretome activates the NF-κB-mediated cytokine-cytokine receptor pathways while also upregulating negative-feedback components, including the NOD-like signaling pathway. Because of AI-2's relevance as a bacterium-bacterium signaling molecule and the differences in its secretion rates between these strains, we investigated its role in HCT-8 cells. We found that the expression of the inflammatory cytokine interleukin 8 (IL-8) responded to AI-2 with a pattern of rapid upregulation before subsequent downregulation after 24 h. Collectively, these data demonstrate that secreted products from nonpathogenic bacteria stimulate the transcription of immune-related biological pathways, followed by the upregulation of negative-feedback elements that may serve to temper the inflammatory response.IMPORTANCEThe symbiotic relationship between the microbiome and the host is important in the maintenance of human health. There is a growing need to further understand the nature of these relationships to aid in the development of homeostatic probiotics and also in the design of novel antimicrobial therapeutics. To our knowledge, this is the first global-transcriptome study of bacteria cocultured with human epithelial cells in a model to determine the transcriptional effects of epithelial cells in which epithelial and bacterial cells are allowed to “communicate” with each other only through diffusible small molecules and proteins. By beginning to demarcate the direct and indirect effects of bacteria on the gastrointestinal (GI) tract, two-way interkingdom communication can potentially be mediated between host and microbe.


Sign in / Sign up

Export Citation Format

Share Document