Repression of Phenol Catabolism by Organic Acids in Ralstonia eutropha

1998 ◽  
Vol 64 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Frédéric Ampe ◽  
David Léonard ◽  
Nicholas D. Lindley

ABSTRACT During batch growth of Ralstonia eutropha (previously named Alcaligenes eutrophus) on phenol in the presence of acetate, acetate was found to be the preferred substrate; this organic acid was rapidly metabolized, and the specific rate of phenol consumption was considerably decreased, although phenol consumption was not abolished. This decrease corresponded to a drop in phenol hydroxylase and catechol-2,3-dioxygenase specific activities, and the synthesis of the latter was repressed at the transcriptional level. Studies with a mutant not able to consume acetate indicated that the organic acid itself triggers the repression. Other organic acids were also found to repress phenol degradation. One of these, benzoate, was found to completely block the catabolism of phenol (diauxic growth). A mutant unable to metabolize benzoate was also unable to develop on benzoate-phenol mixtures, indicating that the organic acid rather than a metabolite involved in benzoate degradation was responsible for the repression observed.

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 332
Author(s):  
Zhiqiang Jiang ◽  
Qing Huang ◽  
Dongfeng Jia ◽  
Min Zhong ◽  
Junjie Tao ◽  
...  

Studies on organic acid metabolism have been mainly concentrated on the fruit, whereas, few have focused on the mechanism of high organic acids content in the fruit of Actinidia eriantha. Fruits of ‘Ganmi 6’ harvested at eleven developmental periods were used as materials. The components and content of organic acids were determined by high-performance liquid chromatography (HPLC) system, the activities of the related enzyme were detected, and gene expression levels were measured by quantitative real-time PCR (qRT-PCR). Components of ascorbic acid (AsA) and eight kinds of organic acids were detected. These results showed that quinic acid and citric acid were the main organic acids in the fruit of ‘Ganmi 6’. Correlation analysis showed that NADP-Quinate dehydrogenase (NADP-QDH), NADP-Shikimate dehydrogenase (NADP-SDH), and Cyt-Aconitase (Cyt-Aco) may be involved in regulating organic acids biosynthesis. Meanwhile, the SDH gene may play an important role in regulating the accumulation of citric acid. In this study, the activities of NADP-SDH, Mit-Aconitase (Mit-Aco), and NAD-Isocitrate dehydrogenase (NAD-IDH) were regulated by their corresponding genes at the transcriptional level. The activity of Citrate synthase (CS) may be affected by post-translational modification. Our results provided new insight into the characteristics of organic acid metabolism in the fruit of A. eriantha.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 209-210
Author(s):  
Casey L Bradley ◽  
Jon Bergstrom ◽  
Jeremiah Nemechek ◽  
J D Hahn

Abstract A subset of 720 weaned pigs (6.44 ± 0.1 kg, PIC genetics, approximately 21-d of age) were used in a 42-d trial with a 2x3 factorial design evaluating the effects of adding organic acid (OA) blends [factor 1 = no organic acid (NO), Acid Pak 1 (AP1), Acid Pak 2 (AP2)] to diets with or without higher levels of Zn or Cu [factor 2 = +/-PZC] on pig performance. Pigs were allotted 10 pigs/pen to 12 weight blocks and randomly assigned the six dietary treatments. The +PZC diets contained 3000 ppm Zn (d 0-7), 2000 ppm Zn (d 8-21), and 250 ppm Cu (d 21-42) and -PZC diets contained 95 ppm Zn and 20 ppm Cu (d 0-42). The AP1 and AP2 diets used 0.9% of 2 acid premixes (d 0-21), and 0.45% of the premixes (day 22-42). AP1 provided 0.5% benzoic acid, 0.07% sodium butyrate, and 0.025% phosphoric acid (day 0-21) and half those levels (day 22-42). AP2 included the same acids as AP1 but at half the rate and combined with 7 other organic acids and carvacrol. From d 0-21, ADG, ADFI, and G:F were improved (P< 0.01) by +PZC compared to -PZC and by AP1 or AP2 compared to NO (P< 0.02). Overall (d 0-42), ADG and G:F were improved (P< 0.01) by +PZC compared to -PZC and by AP1 or AP2 compared to NO (P< .010). Data from this trial indicate that performance was improved by the addition of both OA and PZC. However, pigs fed OA and -PZC performed similarly to those fed NO and +PZC in the post-weaning period. In summary, regardless of the acid combination, organic acid supplementation has the potential to improve growth performance in weaned pigs.


1988 ◽  
Vol 15 (4) ◽  
pp. 557 ◽  
Author(s):  
MJ Canny ◽  
ME Mccully

Three methods of sampling xylem sap of maize roots were compared: sap bleeding from the stem cut just above the ground; sap bleeding from the cut tops of roots still undisturbed in the ground; and sap aspirated from excavated roots under reduced pressure. The bleeding saps were often unobtainable. When their composition was measured with time from cutting, the concentrations of the major solutes approximately doubled in 2 h. Aspirated sap was chosen as the most reliable sample of root xylem contents. Solute concentrations of the saps showed great variability between individual roots for all solutes, but on average the concentrations found (in �mol g-1 sap) were: total amino acids, 1.8; nitrate, 1.8; sugars (mainly sucrose), 5.4; total organic acids, 18.3. Individual amino acids also varied greatly between roots. Glutamine, aspartic acid and serine were generally most abundant. The principal organic acid found was malic, approximately 8 �mol g-1. From these analyses the ratios of carbon in the fractions (sugars : amino acids : organic acids) = (44 : 6 : 50). 14Carbon pulse fed to a leaf appeared in the root sap within 30 min, rose to a peak at 4-6 h, and declined slowly over a week. During all this time the neutral, cation and anion fractions were sensibly constant in the proportions 86 : 10 : 4. The 14C therefore did not move towards the equilibrium of 12C-compounds in the sap. It is argued that the results do not support a hypothesis of formation of amino carbon from recent assimilate and reduced nitrate in the roots and an export of this to the shoot in the transpiration stream.


2018 ◽  
Author(s):  
Theodora Nah ◽  
Hongyu Guo ◽  
Amy P. Sullivan ◽  
Yunle Chen ◽  
David J. Tanner ◽  
...  

Abstract. The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx) and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measurements from a field study conducted in an agricultural-intensive region in the southeastern U.S. during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via the gas-particle partitioning of semi-volatile organic acids. Particle water and pH were determined using the ISORROPIA-II thermodynamic model and validated by comparing predicted inorganic HNO3-NO3− and NH3-NH4+ gas-particle partitioning ratios with measured values. Our results showed that despite the high NH3 concentrations (study average 8.1 ± 5.2 ppb), PM1 were highly acidic with pH values ranging from 0.9 to 3.8, and a study-averaged pH of 2.2 ± 0.6. PM1 pH varied by approximately 1.4 units diurnally. Formic and acetic acids were the most abundant gas-phase organic acids, and oxalate was the most abundant particle-phase water-soluble organic acid anion. Measured particle-phase water-soluble organic acids were on average 6 % of the total non-refractory PM1 organic aerosol mass. The measured molar fraction of oxalic acid in the particle phase (i.e., particle-phase oxalic acid molar concentration divided by the total oxalic acid molar concentration) ranged between 47 and 90 % for PM1 pH 1.2 to 3.4. The measured oxalic acid gas-particle partitioning ratios were in good agreement with their corresponding thermodynamic predictions, calculated based on oxalic acid’s physicochemical properties, ambient temperature, particle water and pH. In contrast, gas-particle partitioning of formic and acetic acids were not well predicted for reasons currently unknown. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.


2000 ◽  
Vol 38 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Ram P. Garg ◽  
Wandee Yindeeyoungyeon ◽  
Anja Gilis ◽  
Timothy P. Denny ◽  
Daniel van der Lelie ◽  
...  

PEDIATRICS ◽  
1968 ◽  
Vol 42 (2) ◽  
pp. 303-311
Author(s):  
R. Torres-Pinedo ◽  
E. Conde ◽  
G. Robillard ◽  
M. Maldonado

Saline and glucose-saline solutions were instilled into the distal colons of infants with acute infectious diarrhea. Samples of the fluid were obtained at hourly intervals. Clear-cut differences in compositional changes were observed with the saline and glucose-saline solutions. The net effects induced by glucose were: (1) generation of organic acids and subsequent formation of poorly absorbable organic acid salts, and (2) osmotic inflow of water. The overall process led to a net gain of hydrogen ion by the body fluids, decrease in sodium absorption, augmented potassium loss, and net increase in volume of the colonic fluid.


Author(s):  
Loredana Leopold ◽  
Diehl Horst ◽  
Carmen Socaciu

Organic acids give fruit products their characteristic tartness and vary in combination and in concentrations among different juices. The organic acid profile can be used to identify a juice or verify its purity. Typically, organic acids in fruit juices are identified and quantified by using methods such as HPLC. In this procedure, reversed phase column is used to separate and identificate six organic acids. Because several of the analytes are extremely difficult to resolve, a aqueous mobile phase is needed to enhance interaction between the acids and the C18 stationary phase.


Sign in / Sign up

Export Citation Format

Share Document