scholarly journals Influence of Medium Buffering Capacity on Inhibition of Saccharomyces cerevisiae Growth by Acetic and Lactic Acids

2002 ◽  
Vol 68 (4) ◽  
pp. 1616-1623 ◽  
Author(s):  
K. C. Thomas ◽  
S. H. Hynes ◽  
W. M. Ingledew

ABSTRACT Acetic acid (167 mM) and lactic acid (548 mM) completely inhibited growth of Saccharomyces cerevisiae both in minimal medium and in media which contained supplements, such as yeast extract, corn steep powder, or a mixture of amino acids. However, the yeast grew when the pH of the medium containing acetic acid or lactic acid was adjusted to 4.5, even though the medium still contained the undissociated form of either acid at a concentration of 102 mM. The results indicated that the buffer pair formed when the pH was adjusted to 4.5 stabilized the pH of the medium by sequestering protons and by lessening the negative impact of the pH drop on yeast growth, and it also decreased the difference between the extracellular and intracellular pH values (ΔpH), the driving force for the intracellular accumulation of acid. Increasing the undissociated acetic acid concentration at pH 4.5 to 163 mM by raising the concentration of the total acid to 267 mM did not increase inhibition. It is suggested that this may be the direct result of decreased acidification of the cytosol because of the intracellular buffering by the buffer pair formed from the acid already accumulated. At a concentration of 102 mM undissociated acetic acid, the yeast grew to higher cell density at pH 3.0 than at pH 4.5, suggesting that it is the total concentration of acetic acid (104 mM at pH 3.0 and 167 mM at pH 4.5) that determines the extent of growth inhibition, not the concentration of undissociated acid alone.

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 59
Author(s):  
Timothy J. Tse ◽  
Daniel J. Wiens ◽  
Jianheng Shen ◽  
Aaron D. Beattie ◽  
Martin J. T. Reaney

As barley and oat production have recently increased in Canada, it has become prudent to investigate these cereal crops as potential feedstocks for alcoholic fermentation. Ethanol and other coproduct yields can vary substantially among fermented feedstocks, which currently consist primarily of wheat and corn. In this study, the liquified mash of milled grains from 28 barley (hulled and hull-less) and 12 oat cultivars were fermented with Saccharomyces cerevisiae to determine concentrations of fermentation products (ethanol, isopropanol, acetic acid, lactic acid, succinic acid, α-glycerylphosphorylcholine (α-GPC), and glycerol). On average, the fermentation of barley produced significantly higher amounts of ethanol, isopropanol, acetic acid, succinic acid, α-GPC, and glycerol than that of oats. The best performing barley cultivars were able to produce up to 78.48 g/L (CDC Clear) ethanol and 1.81 g/L α-GPC (CDC Cowboy). Furthermore, the presence of milled hulls did not impact ethanol yield amongst barley cultivars. Due to its superior ethanol yield compared to oats, barley is a suitable feedstock for ethanol production. In addition, the accumulation of α-GPC could add considerable value to the fermentation of these cereal crops.


1976 ◽  
Vol 39 (12) ◽  
pp. 819-822 ◽  
Author(s):  
B. J. JUVEN

A strain of Lactobacillus brevis, L-3, was isolated from a blown can of grapefruit segments in sugar syrup; it caused spoilage of citrus products having pH values lower than 3.5. When inoculated into orange (pH 3.38) and grapefruit (pH 2.99) juices, after 5 h at 30 C L-3 produced 15 and 22 μg diacetyl/ml, respectively, and off-flavor was detectable. L-3 grew in APT broth acidified to pH 3.0 with citric, hydrochloric, phosphoric, or tartaric acid. However, its growth was inhibited at pH 3.6 if the acidulant was lactic acid, while with acetic acid inhibition occurred at a pH between 3.7 and 4.0. The thermal resistance of L-3 in orange serum (pH 3.4) was studied in the temperature range of 52 to 60 C: a z value of 8.3 was obtained. A simple and reliable capillary technique for studying the thermal resistance of gas-producing organisms in liquid foods and media is presented.


1989 ◽  
Vol 52 (8) ◽  
pp. 571-573 ◽  
Author(s):  
KENT M. SORRELLS ◽  
DAVIN C. ENIGL ◽  
JOHN R. HATFIELD

The effect of different acids, pH, incubation time, and incubation temperature on the growth and survival of four strains of Listeria monocytogenes in tryptic soy broth was compared. Hydrochloric acid (HCl), acetic acid (AA), lactic acid (LA), malic acid (MA), and citric acid (CA) were used to acidify tryptic soy broth to pH values 4.4, 4.6, 4.8, 5.0, and 5.2 pH. Incubation times were 1, 3, 7, 14, and 28 d at 10, 25, and 35°C. The inhibition of L. monocytogenes in the presence of high acidity appears to be a function of acid and incubation temperature. Based on equal pH values, the antimicrobial activity is AA > LA > CA ≥ MA > HCl at all incubation times and temperatures. When based on equal molar concentration, the activity appeared to be CA ≥ MA > LA ≥ AA > HCl at 35 and 25°C, and MA > CA > AA ≥ LA > HCl at 10°C. Greatest antimicrobial activity occurred at 35°C. Greatest survival occurred at 10°C and greatest growth occurred at 25°C. Final pH of the medium was as low as 3.8 in HCl at 28 d. All strains grew well at pH values lower than the minimum previously reported (5.5–5.6).


1970 ◽  
Vol 33 (11) ◽  
pp. 516-520 ◽  
Author(s):  
T. E. Minor ◽  
E. H. Marth

The effect of gradually reducing the pH of pasteurized milk with acetic, citric, hydrochloric, lactic, and phosphoric acids over periods of 4, 8, and 12 hr on growth of Staphylococcus aureus 100 in this substrate was determined. In addition, 1: 1 mixtures of lactic acid and each of the other acids, and of acetic and citric acids were evaluated for their effect on growth of this organism. To achieve a 90% reduction in growth over a 12 hr period, a final pH value of 5.2 was required for acetic, 4.9 for lactic, 4.7 for phosphoric and citric, and 4.6 for hydrochloric acid. A 99% reduction during a 12 hr period was obtained with a final pH value of 5.0 for acetic, 4.6 for lactic, 4.5 for citric, 4.1 for phosphoric, and 4.0 for hydrochloric acid. A pH value of 3.3 was required for a 99.9% reduction with hydrochloric acid, whereas the same effect was produced at a pH value of 4.9 with acetic acid. Correspondingly lower pH values were required to inhibit growth within 8 and 4 hr periods. Mixtures of acids adjusted to pH values at the borderline for growth (12 hr period) exhibited neither synergistic nor antagonistic effects between two acids.


2011 ◽  
Vol 74 (5) ◽  
pp. 820-825 ◽  
Author(s):  
YOEN JU PARK ◽  
JINRU CHEN

This study was conducted to evaluate the abilities of five neutralizing agents, Dey-Engley (DE) neutralizing broth (single or double strength), morpholinepropanesulfonic acid (MOPS) buffer, phosphate-buffered saline (PBS), and sodium thiosulfate buffer, in mitigating the activities of acetic or lactic acid (2%) and an alkaline or acidic sanitizer (a manufacturer-recommended concentration) againt the cells of Shiga toxin–producing Escherichia coli (STEC; n = 9). To evaluate the possible toxicity of the neutralizing agents to the STEC cells, each STEC strain was exposed to each of the neutralizing agents at room temperature for 10 min. Neutralizing efficacy was evaluated by placing each STEC strain in a mixture of sanitizer and neutralizer under the same conditions. The neutralizing agents had no detectable toxic effect on the STEC strains. PBS was least effective for neutralizing the activity of selected organic acids and sanitizers. Single-strength DE and sodium thiosulfate neutralized the activity of both acetic and lactic acids. MOPS buffer neutralized the activity of acetic acid and lactic acid against six and five STEC strains, respectively. All neutralizing agents, except double-strength DE broth, had a limited neutralizing effect on the activity of the commercial sanitizers used in the study. The double-strength DE broth effectively neutralized the activity of the two commercial sanitizers with no detectable toxic effects on STEC cells.


2019 ◽  
Vol 20 (7) ◽  
pp. 1659
Author(s):  
Katarzyna Pielech-Przybylska ◽  
Maria Balcerek ◽  
Grzegorz Ciepielowski ◽  
Barbara Pacholczyk-Sienicka ◽  
Łukasz Albrecht ◽  
...  

The qualitative and quantitative composition of volatile compounds in fermented distillery mash determines the quality of the obtained distillate of agricultural origin (i.e., raw spirit) and the effectiveness of further purification steps. Propan-2-ol (syn. isopropyl alcohol), due to its low boiling point, is difficult to remove by rectification. Therefore, its synthesis needs to be limited during fermentation by Saccharomyces cerevisiae yeast, while at the same time controlling the levels of acetaldehyde and acetic acid, which are likewise known to determine the quality of raw spirit. Lactic acid bacteria (LAB) are a common but undesirable contaminant in distillery mashes. They are responsible for the production of undesirable compounds, which can affect synthesis of propan-2-ol. Some bacteria strains are able to synthesize isopropyl alcohol. This study therefore set out to investigate whether LAB with S. cerevisiae yeast are responsible for conversion of acetone to propan-2-ol, as well as the effects of the amount of LAB inoculum and fermentation parameters (pH and temperature) on the content of isopropyl alcohol, acetaldehyde, lactic acid and acetic acid in fermented mashes. The results of NMR and comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC-TOF MS) analysis confirmed the ability of the yeast and LAB strains to metabolize acetone via its reduction to isopropyl alcohol. Efficient fermentation of distillery mashes was observed in all tested mashes with an initial LAB count of 3.34–6.34 log cfu/mL, which had no significant effect on the ethanol content. However, changes were observed in the contents of by-products. Lowering the initial pH of the mashes to 4.5, without and with LAB (3.34–4.34 log cfu/mL), resulted in a decrease in propan-2-ol and a concomitant increase in acetaldehyde content, while a higher pH (5.0 and 5.5) increased the content of propan-2-ol and decreased acetaldehyde content. Higher temperature (35 °C) promoted propan-2-ol synthesis and also resulted in increased acetic acid content in the fermented mashes compared to the controls. Moreover, the acetic acid content rose with increases in the initial pH and the initial LAB count.


2003 ◽  
Vol 376 (3) ◽  
pp. 781-787 ◽  
Author(s):  
Isabel SOARES-SILVA ◽  
Dorit SCHULLER ◽  
Raquel P. ANDRADE ◽  
Fátima BALTAZAR ◽  
Fernanda CÁSSIO ◽  
...  

In Saccharomyces cerevisiae the activity for the lactate–proton symporter is dependent on JEN1 gene expression. Pichia pastoris was transformed with an integrative plasmid containing the JEN1 gene. After 24 h of methanol induction, Northern and Western blotting analyses indicated the expression of JEN1 in the transformants. Lactate permease activity was obtained in P. pastoris cells with a Vmax of 2.1 nmol·s−1·mg of dry weight−1. Reconstitution of the lactate permease activity was achieved by fusing plasma membranes of P. pastoris methanol-induced cells with Escherichia coli liposomes containing cytochrome c oxidase, as proton-motive force. These assays in reconstituted heterologous P. pastoris membrane vesicles demonstrate that S. cerevisiae Jen1p is a functional lactate transporter. Moreover, a S. cerevisiae strain deleted in the JEN1 gene was transformed with a centromeric plasmid containing JEN1 under the control of the glyceraldehyde-3-phosphate dehydrogenase constitutive promotor. Constitutive JEN1 expression and lactic acid uptake were observed in cells grown on either glucose and/or acetic acid. The highest Vmax (0.84 nmol·s−1·mg of dry weight−1) was obtained in acetic acid-grown cells. Thus overexpression of the S. cerevisiae JEN1 gene in both S. cerevisiae and P. pastoris cells resulted in increased activity of lactate transport when compared with the data previously reported in lactic acid-grown cells of native S. cerevisiae strains. Jen1p is the only S. cerevisiae secondary porter characterized so far by heterologous expression in P. pastoris at both the cell and the membrane-vesicle levels.


2012 ◽  
Vol 554-556 ◽  
pp. 1053-1056 ◽  
Author(s):  
Yi Fen Zhuang ◽  
Xin Zhu Chen ◽  
Zhao Xia Dong ◽  
Jian Guo Zhang ◽  
Wen Chang Zhang

Two moisture levels of sugarcane top (moisture contents 69.03% - MC1 and 56.38% - MC2) were treated with fermented green juice (FGJ) at 2 ml/kg and/or with cellulase (CEL) at 5000 U/kg raw matter, and ensiled in the laboratory at ambient temperature. All additive treatments significantly (P<0.01) increased lactic acid and water soluble carbohydrate (WSC) contents, and significantly (P<0.01) decreased pH and contents of NH3-N and acetic acid compared with the control. The treatment of FGJ and CEL mixture significantly (P<0.01) decreased pH and content of acetic acid (AA) compared with treatments of FGJ and CEL alone. All the MC2 silages had more extensive fermentation than MC1 silage, shown by higher contents of lactic acid, lower pH values and NH3-N contents. In conclusion, both FGJ and CEL addition significantly improved the silage quality of sugarcane top, and their mixture had better result than FGJ and CEL alone. Reducing the moisture content of sugarcane top could improve its silage quality.


1989 ◽  
Vol 52 (10) ◽  
pp. 688-695 ◽  
Author(s):  
NORMAH AHAMAD ◽  
ELMER H. MARTH

Inhibition of Listeria monocytogenes CA and V7 by of acetic, citric, and lactic acids at 7, 13, 21, and 35°C was investigated. Statistical analysis showed interactive effects between temperature, types, and concentration of acids and strains of the pathogen. Presence of up to 0.1% of acetic, citric and lactic acids in the medium (tryptose broth) inhibited growth; the degree of inhibition increased as the temperature of incubation decreased (no growth occurred in the presence of 0.1% acetic acid at 7°C). L. monocytogenes was inactivated at all temperatures when acid concentrations in the medium were 0.3% or greater. Acetic acid was most detrimental to L. monocytogenes followed in order by lactic and citric acids. The antilisterial activity of these acids coincided with their degree of undissociation. Citric and lactic acids, with larger dissociation constants, were less detrimental to the pathogen than was acetic acid.


Sign in / Sign up

Export Citation Format

Share Document