scholarly journals Presence and Growth of Naturalized Escherichia coli in Temperate Soils from Lake Superior Watersheds

2006 ◽  
Vol 72 (1) ◽  
pp. 612-621 ◽  
Author(s):  
Satoshi Ishii ◽  
Winfried B. Ksoll ◽  
Randall E. Hicks ◽  
Michael J. Sadowsky

ABSTRACT The presence of Escherichia coli in water is used as an indicator of fecal contamination, but recent reports indicate that soil populations can also be detected in tropical, subtropical, and some temperate environments. In this study, we report that viable E. coli populations were repeatedly isolated from northern temperate soils in three Lake Superior watersheds from October 2003 to October 2004. Seasonal variation in the population density of soilborne E. coli was observed; the greatest cell densities, up to 3 × 103 CFU/g soil, were found in the summer to fall (June to October), and the lowest numbers, ≤1 CFU/g soil, occurred during the winter to spring months (February to May). Horizontal, fluorophore-enhanced repetitive extragenic palindromic PCR (HFERP) DNA fingerprint analyses indicated that identical soilborne E. coli genotypes, those with ≥92% similarity values, overwintered in frozen soil and were present over time. Soilborne E. coli strains had HFERP DNA fingerprints that were unique to specific soils and locations, suggesting that these E. coli strains became naturalized, autochthonous members of the soil microbial community. In laboratory studies, naturalized E. coli strains had the ability to grow and replicate to high cell densities, up to 4.2 × 105 CFU/g soil, in nonsterile soils when incubated at 30 or 37°C and survived longer than 1 month when soil temperatures were ≤25°C. To our knowledge, this is the first report of the growth of naturalized E. coli in nonsterile, nonamended soils. The presence of significant populations of naturalized populations of E. coli in temperate soils may confound the use of this bacterium as an indicator of fecal contamination.

2017 ◽  
Vol 78 (1) ◽  
pp. 155-159 ◽  
Author(s):  
M. Oliveira ◽  
D. Freire ◽  
N. M. Pedroso

Abstract The detection of pathogenic microorganisms in aquatic environments is extremely relevant in terms of public health. As these laboratorial methodologies are usually difficult, expensive and time-consuming, they are frequently replaced by the assessment of fecal indicator bacteria, such as Escherichia coli. This study aimed to assess the presence of E. coli in fecal samples from Neotropical otters, to evaluate its potential as fecal indicator to be applied to the determination of water microbiological quality in areas where otters’ populations are high. Twenty-six otter fecal samples, collected in Alto Paranapanema river basin, São Paulo State, Brazil, were analyzed for the presence of E. coli, using conventional bacteriological methods. Only 8 scat samples (30%) were E. coli positive, indicating that this microorganism is not a suitable fecal indicator to assess water fecal contamination by Neotropical otters, and should not be used to infer the presence of otter related pathogens in waters.


2004 ◽  
Vol 67 (9) ◽  
pp. 1829-1833 ◽  
Author(s):  
J. A. CASON ◽  
M. E. BERRANG ◽  
R. J. BUHR ◽  
N. A. COX

Paired carcass halves were used to test whether fecal contamination of skin during processing of broiler chickens can be detected by increased bacterial counts in samples taken before and after immersion chilling. In each of three trials, six freshly defeathered and eviscerated carcasses were cut in half, and a rectangle (3 by 5 cm) was marked with dots of ink on the breast skin of each half. One half of each pair was chosen randomly, and 0.1 g of freshly collected feces was spread over the rectangle with a spatula. After 10 min, both halves were sprayed with tap water for 10 to 15 s until feces could no longer be seen in the marked area. Both halves were sampled with a 1-min carcass rinse and were then put in a paddle chiller with other eviscerated carcasses for 45 min to simulate industrial immersion chilling. Immediately after chilling, each carcass half was subjected to another 1-min rinse, after which the skin within the rectangle was aseptically removed from the carcass halves and stomached. Rinses of fecally contaminated halves had significantly higher Enterobacteriaceae immediately before chilling, but there were no differences in coliform and Escherichia coli counts. After chilling, there were no differences in Enterobacteriaceae, coliform, and E. coli counts in rinse or skin samples from the paired carcass halves. Correlations were generally poor between counts in rinse and skin samples but were significant between prechill and postchill rinses for both control and fecally contaminated halves. Correlations were also significant between counts in rinses of control and contaminated halves of the same carcass after chilling. Bacterial counts in postchill carcass rinses did not indicate that fecal contamination occurred before chilling.


2007 ◽  
Vol 73 (12) ◽  
pp. 3771-3778 ◽  
Author(s):  
Winfried B. Ksoll ◽  
Satoshi Ishii ◽  
Michael J. Sadowsky ◽  
Randall E. Hicks

ABSTRACT Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4 � 105 CFU cm−2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (≥92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.


2010 ◽  
Vol 90 (3) ◽  
pp. 495-505 ◽  
Author(s):  
A C VanderZaag ◽  
K J Campbell ◽  
R C Jamieson ◽  
A C Sinclair ◽  
L G Hynes

Animal agriculture and the use of manure as a soil amendment can lead to enteric pathogens entering water used for drinking, irrigation, and recreation. The presence of Escherichia coli in water is commonly used as an indicator of recent fecal contamination; however, a few recent studies suggest some E. coli populations are able to survive for extended time periods in agricultural soils. This important finding needs to be further assessed with field-scale studies. To this end, we conducted a 1-yr study within a 9.6-ha field that had received fertilizer and semi-solid dairy cattle manure annually for the past decade. Escherichia coli concentrations were monitored throughout the year (before and after manure application) in the effluent from tile drains (at approximately 80 cm depth) and in 5- to 8-m-deep groundwater wells. Escherichia coli was detected in both groundwater and tile drain effluent at concentrations exceeding irrigation and recreational water-quality guidelines. Within two of the monitoring wells, concentrations of E. coli, and frequency of detections, were greatest several months after the manure application. In two monitoring wells and one tile drain the frequency of E. coli detections was higher before manure was applied than after. This suggests the presence and abundance of E. coli was not strongly related to the timing of manure application. A laboratory study using naladixic acid resistant E. coli showed the bacteria could survive at least two times longer in soil samples collected from the study field than in soil from the adjacent riparian area, which had not received manure applications. Together, field and lab results suggest that a consistent source of E. coli exists within the field, which may include “naturalized” strains of E. coli. Further studies are required to determine the specific source of E. coli detected in tile drainage water and shallow groundwater. If the E. coli recovered in subsurface water is primarily mobilized from naturalized populations residing within the soil profile, this indicator organism would have little value as an indicator of recent fecal contamination. Key words: Bacterial survival, naturalized Escherichia coli, groundwater, tile drainage


2004 ◽  
Vol 70 (8) ◽  
pp. 4478-4485 ◽  
Author(s):  
LeeAnn K. Johnson ◽  
Mary B. Brown ◽  
Ethan A. Carruthers ◽  
John A. Ferguson ◽  
Priscilla E. Dombek ◽  
...  

ABSTRACT A horizontal, fluorophore-enhanced, repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique (HFERP) was developed and evaluated as a means to differentiate human from animal sources of Escherichia coli. Box A1R primers and PCR were used to generate 2,466 rep-PCR and 1,531 HFERP DNA fingerprints from E. coli strains isolated from fecal material from known human and 12 animal sources: dogs, cats, horses, deer, geese, ducks, chickens, turkeys, cows, pigs, goats, and sheep. HFERP DNA fingerprinting reduced within-gel grouping of DNA fingerprints and improved alignment of DNA fingerprints between gels, relative to that achieved using rep-PCR DNA fingerprinting. Jackknife analysis of the complete rep-PCR DNA fingerprint library, done using Pearson's product-moment correlation coefficient, indicated that animal and human isolates were assigned to the correct source groups with an 82.2% average rate of correct classification. However, when only unique isolates were examined, isolates from a single animal having a unique DNA fingerprint, Jackknife analysis showed that isolates were assigned to the correct source groups with a 60.5% average rate of correct classification. The percentages of correctly classified isolates were about 15 and 17% greater for rep-PCR and HFERP, respectively, when analyses were done using the curve-based Pearson's product-moment correlation coefficient, rather than the band-based Jaccard algorithm. Rarefaction analysis indicated that, despite the relatively large size of the known-source database, genetic diversity in E. coli was very great and is most likely accounting for our inability to correctly classify many environmental E. coli isolates. Our data indicate that removal of duplicate genotypes within DNA fingerprint libraries, increased database size, proper methods of statistical analysis, and correct alignment of band data within and between gels improve the accuracy of microbial source tracking methods.


2006 ◽  
Vol 72 (7) ◽  
pp. 4583-4588 ◽  
Author(s):  
Artashes R. Khachatryan ◽  
Thomas E. Besser ◽  
Dale D. Hancock ◽  
Douglas R. Call

ABSTRACT We examined how a dietary supplement affects the prevalence of antibiotic-resistant Escherichia coli on a dairy farm in Washington State. Between 2001 and 2004 the prevalence of fecal E. coli strains resistant to streptomycin, sulfadiazine, and tetracycline (SSuT strains) declined from 59.2% to 26.1% in the calf population. In 2003 the dairy discontinued use of a dietary supplement, and we hypothesized that the decline in prevalence of SSuT strains was related to this change in management. To test this we established three treatments in which calves received no supplement, the dietary supplement with oxytetracycline, or the dietary supplement without oxytetracycline. Calves receiving either dietary supplement had a significantly higher prevalence of SSuT E. coli than the no-supplement control group (≈37% versus 20%, respectively; P = 0.03). Importantly, there was no evidence that oxytetracycline contributed to an increased prevalence of fecal SSuT E. coli. We compared the growth characteristics of SSuT and non-SSuT E. coli in LB broth enriched with either the complete dietary supplement or its individual constituents. Both the complete dietary supplement and its vitamin D component supported a significantly higher cell density of SSuT strains (P = 0.003 and P = 0.001, respectively). The dry milk and vitamin A components of the dietary supplement did not support different cell densities. These results were consistent with selection and maintenance of SSuT E. coli due to environmental components independent of antibiotic selection.


2021 ◽  
Vol 99 (12) ◽  
pp. 1353-1359
Author(s):  
Angelika V. Zagainova ◽  
Galina M. Trukhina ◽  
Yury A. Rakhmanin ◽  
Tamara Z. Artemova ◽  
Marina A. Sukhina

Introduction. The increasing bacterial contamination of water bodies requires an increase in water quality control’s reliability to ensure epidemic safety against waterborne infections. Therefore, researchers in both Russia and Europe came to the conclusion that it is necessary to search for indicator microorganisms that can more accurately suggest the presence of pathogens. microorganisms in water than traditional indicators. The aim of the study was to justify the introduction of indicator indices of fecal contamination “generalized coliform bacteria” and Escherichia coli to assess the safety of drinking water Material and methods. The article provides an analysis of domestic and international regulatory documents and literary materials regulating the quality of drinking water in terms of sanitary and microbiological indicators and assessment criteria. The results of many years of experimental and field research carried out by research organizations and practical organizations of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare are presented. Results. On the territory of Russia, “general coliform bacteria,” is one of the indicator indices chosen according to the fermentation of lactose, determine the safety of drinking water. The water does not take into account pathogenic bacteria (Salmonella, Shigella) and a number of lactose-negative opportunistic bacteria, causative agents of intestinal infections. The study of microorganisms isolated from the feces of patients confirms the frequency of occurrence of lactose-negative microorganisms to varying from 20 to 100% of strains. With an annual trend towards a decrease in the percentage of non-standard drinking water samples in terms of microbiological indices, general intestinal infections (GII) of unknown etiology increase, i.e. risk of GII. If the quality of drinking water does not correspond to thermotolerant coliform bacteria (TCB), 95% of samples contain E. coli. Therefore, the determination of E. coli more reliably indicates the intake of fresh fecal contamination and provides efficiency in taking measures to eliminate an unfavorable situation than TCB. Conclusion. Reasons are given for the introduction of more reliable microbiological indicators of water safety control, such as - “generalized coliform bacteria” with the preservation of the abbreviation GCB, combining both lactose-positive and lactose-negative bacteria, determined by the sign of glucose fermentation, negative oxidase test and negative stain according to Gram and E. coli as an indicator of recent faecal contamination, which will allow the assessment of water quality for a wide range of bacteria of the order Enterobacterials, corresponding to the modern taxonomy of Enterobacteriaceae NCBI, will ensure harmonization with international requirements and the safety of drinking water for the population.


Author(s):  
Farhan Mohammad Khan ◽  
Rajiv Gupta

Escherichia coli or E. coli is a member of the fecal coliform group and is a more specific indicator of fecal contamination than other fecal coliform species, its presence indicate possibly presence of harmful bacteria which will cause diseases and it also suggests the extent as well as the nature of the contaminants. E. coli bacteria able to survive in water for 4 – 12 weeks and at present, it appears as an indicator to provide the accurate bacterial contamination of fecal matter in drinking water, because of the availability of simple, affordable, fast, sensitive and exact detection techniques. According to the laboratory experiment based techniques, 24 - 48 hours are required for the bacterial concentration to be reported. So, there is a necessity for continuous monitoring. Techniques for detection of many pathogenic bacterial strains are not yet available, sometimes days to weeks are required to get the results. To overcome the difficulties, expensive and time-consuming techniques are required to detect, count and identify the presence of specific bacterial strain. Public health relies on online monitoring of water quality that depends majorly on examination of fecal indicator bacteria, thus protection of health requires fecal pollution indicator so that it is not required to analyze drinking water to overcome the problems associated with waterborne diseases. This paper will brief the classification, sources, survival of E. coli bacteria and its correlation with basic water quality parameters in water sources.```


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paty Nakhle ◽  
Olivier Ribolzi ◽  
Laurie Boithias ◽  
Sayaphet Rattanavong ◽  
Yves Auda ◽  
...  

AbstractIn the basin of Mekong, over 70 million people rely on unimproved surface water for their domestic requirements. Surface water is often contaminated with fecal matter and yet little information exists on the underlying mechanisms of fecal contamination in tropical conditions at large watershed scales. Our objectives were to (1) investigate the seasonality of fecal contamination using Escherichia coli as fecal indicator bacteria (FIB), and (2) establish links between the fecal contamination in stream water and its controlling factors (hydrology and land use). We present the results of (1) a sampling campaign at the outlet of 19 catchments across Lao PDR, in both the dry and the rainy seasons of 2016, and (2) a 10-day interval monitoring conducted in 2017 and 2018 at three point locations of three rivers (Nam Ou, Nam Suang, and Mekong) in northern Lao PDR. Our results show the presence of fecal contamination at most of the sampled sites, with a seasonality characterized by higher and extreme E. coli concentrations occurring during the rainy season. The highest E. coli concentrations, strongly correlated with total suspended sediment concentrations, were measured in catchments dominated by unstocked forest areas, especially in mountainous northern Lao PDR and in Vientiane province.


2000 ◽  
Vol 66 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Alexander D. Frey ◽  
James E. Bailey ◽  
Pauli T. Kallio

ABSTRACT Expression of the vhb gene encoding hemoglobin fromVitreoscilla sp. (VHb) in several organisms has been shown to improve microaerobic cell growth and enhance oxygen-dependent product formation. The amino-terminal hemoglobin domain of the flavohemoprotein (FHP) of the gram-negative hydrogen-oxidizing bacterium Alcaligenes eutrophus has 51% sequence homology with VHb. However, like other flavohemoglobins and unlike VHb, FHP possesses a second (carboxy-terminal) domain with NAD(P)H and flavin adenine dinucleotide (FAD) reductase activities. To examine whether the carboxy-terminal redox-active site of flavohemoproteins can be used to improve the positive effects of VHb in microaerobic Escherichia coli cells, we fused sequences encoding NAD(P)H, FAD, or NAD(P)H-FAD reductase activities of A. eutrophus in frame after the vhb gene. Similarly, the gene for FHP was modified, and expression cassettes encoding amino-terminal hemoglobin (FHPg), FHPg-FAD, FHPg-NAD, or FHP activities were constructed. Biochemically active heme proteins were produced from all of these constructions in Escherichia coli, as indicated by their ability to scavenge carbon monoxide. The presence of FHP or of VHb-FAD-NAD reductase increased the final cell density of transformed wild-type E. coli cells approximately 50 and 75%, respectively, for hypoxic fed-batch culture relative to the control synthesizing VHb. Approximately the same final optical densities were achieved with the E. coli strains expressing FHPg and VHb. The presence of VHb-FAD or FHPg-FAD increased the final cell density slightly relative to the VHb-expressing control under the same cultivation conditions. The expression of VHb-NAD or FHPg-NAD fusion proteins reduced the final cell densities approximately 20% relative to the VHb-expressing control. The VHb-FAD-NAD reductase-expressing strain was also able to synthesize 2.3-fold more recombinant β-lactamase relative to the VHb-expressing control.


Sign in / Sign up

Export Citation Format

Share Document