scholarly journals Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria

2006 ◽  
Vol 19 (2) ◽  
pp. 382-402 ◽  
Author(s):  
Laura J. V. Piddock

SUMMARY Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.

2019 ◽  
Author(s):  
Saida Benomar ◽  
Kara C Evans ◽  
Robert L Unckless ◽  
Josephine R Chandler

ABSTRACTVery little is known of the antibiotic resistance mechanisms of members of theChromobacteriumgenus. In previous studies ofChromobacterium subtsugae(formerlyC. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM). Here, we show thecdeAB-oprMgenes are widely distributed in members of theChromobacteriumgenus. We use antimicrobial susceptibility testing with a CV017cdeAB-oprMmutant to show the products of these genes confers resistance to a variety of antibiotics including ciprofloxacin, a clinically important antibiotic. We also identified a related RND-family pump,cseAB-oprN, in the genome of CV017 and otherC. subtsugaespecies, that is not present in other members of theChromobacteriumgenus. We demonstrate that CdeAB-OprM and CseAB-OprN are both transcriptionally induced in CV017 cells treated with sub-lethal antibiotic concentrations and they are important for induction of tolerance to different antibiotics. While CdeAB-OprM has a broad antibiotic specificity, the CseAB-OprN system is highly specific for a ribosome-targeting antibiotic produced by the saprophytic bacteriumBurkholderia thailandensis,bactobolin. Finally, we use a previously developedB. thailandensis-C. subtsugaeCV017 co-culture model to demonstrate that adding sub-lethal bactobolin at the beginning of co-culture growth increases the ability of CV017 to compete withB. thailandensisin a manner that is dependent on the CseAB-OprN system. Our results provide new information on the antibiotic resistance mechanisms ofChromobacteriumspecies and highlight the importance of efflux pumps during competition with other bacterial species.IMPORTANCEThis study describes two closely related efflux pumps in members of theChromobacteriumgenus, which includes opportunistic but often-fatal pathogens and species with highly versatile metabolic capabilities. Efflux pumps remove antibiotics from the cell and are important for antibiotic resistance. One of these pumps is broadly distributed in theChromobacteriumgenus and increases resistance to clinically relevant antibiotics. The other efflux pump is present only inChromobacterium subtsugaeand is highly specific for bactobolin, an antibiotic produced by the soil saprophyteBurkholderia thailandensis. We demonstrate these pumps can be activated to increase resistance by their antibiotic substrates, and that this activation is important forC. subtsugaeto survive in a laboratory competition experiment withB. thailandensis.These results have implications for managing antibiotic-resistantChromobacteriuminfections, bioengineering ofChromobacteriumspecies, and for understanding the evolution of efflux pumps.


2019 ◽  
Vol 85 (19) ◽  
Author(s):  
Saida Benomar ◽  
Kara C. Evans ◽  
Robert L. Unckless ◽  
Josephine R. Chandler

ABSTRACT Members of the Chromobacterium genus include opportunistic but often-fatal pathogens and soil saprophytes with highly versatile metabolic capabilities. In previous studies of Chromobacterium subtsugae (formerly C. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM) that confers resistance to several antibiotics, including the bactobolin antibiotic produced by the soil saprophyte Burkholderia thailandensis. Here, we show the cdeAB-oprM genes increase C. subtsugae survival in a laboratory competition model with B. thailandensis. We also demonstrate that adding sublethal bactobolin concentrations to the coculture increases C. subtsugae survival, but this effect is not through CdeAB-OprM. Instead, the increased survival requires a second, previously unreported pump we call CseAB-OprN. We show that in cells exposed to sublethal bactobolin concentrations, the cseAB-oprN genes are transcriptionally induced, and this corresponds to an increase in bactobolin resistance. Induction of this pump is highly specific and sensitive to bactobolin, while CdeAB-OprM appears to have a broader range of antibiotic recognition. We examine the distribution of cseAB-oprN and cdeAB-oprM gene clusters in members of the Chromobacterium genus and find the cseAB-oprN genes are limited to the nonpathogenic C. subtsugae strains, whereas the cdeAB-oprM genes are more widely distributed among members of the Chromobacterium genus. Our results provide new information on the antibiotic resistance mechanisms of Chromobacterium species and highlight the importance of efflux pumps for saprophytic bacteria existing in multispecies communities. IMPORTANCE Antibiotic efflux pumps are best known for increasing antibiotic resistance of pathogens; however, the role of these pumps in saprophytes is much less well defined. This study describes two predicted efflux pump gene clusters in the Chromobacterium genus, which is comprised of both nonpathogenic saprophytes and species that cause highly fatal human infections. One of the predicted efflux pump clusters is present in every member of the Chromobacterium genus and increases resistance to a broad range of antibiotics. The other gene cluster has more narrow antibiotic specificity and is found only in Chromobacterium subtsugae, a subset of entirely nonpathogenic species. We demonstrate the role of both pumps in increasing antibiotic resistance and demonstrate the importance of efflux-dependent resistance induction for C. subtsugae survival in a dual-species competition model. These results have implications for managing antibiotic-resistant Chromobacterium infections and for understanding the evolution of efflux pumps outside the host.


2018 ◽  
Author(s):  
Wenfang Lin ◽  
Kun Wan ◽  
Jie Zeng ◽  
Jingjing Li ◽  
Xi Li ◽  
...  

AbstractThe long-term persistence of antibiotic resistance in the environment is a public health concern. Expression of an efflux pump, an important mechanism of resistance to antibiotics, is usually associated with a fitness cost in bacteria. In this study, we aimed to determine why antibiotic resistance conferred by overexpression of an efflux pump persists in environments such as drinking and source water in which antibiotic selective pressure may be very low or even absent. Competition experiments between wild-type Pseudomonas aeruginosa and ciprofloxacin-resistant mutants revealed that the fitness cost of ciprofloxacin resistance (strains cip_1, cip_2, and cip_3) significantly decreased (P < 0.05) under low-nutrient (0.5 mg/l total organic carbon (TOC)) relative to high-nutrient (500 mg/l TOC) conditions. Mechanisms underlying this fitness cost were analyzed. MexD gene expression in resistant bacteria (cip_3 strain) was significantly lower (P < 0.05) in low-nutrient conditions, with 10 mg/l TOC (8.01 ± 0.82-fold), than in high-nutrient conditions, with 500 mg/l TOC (48.89 ± 4.16-fold). Moreover, rpoS gene expression in resistant bacteria (1.36 ± 0.13-fold) was significantly lower (P < 0.05) than that in the wild-type strain (2.78 ± 0.29-fold) under low-nutrient conditions (10 mg/l TOC), suggesting a growth advantage. Furthermore, the difference in metabolic activity between the two competing strains was significantly smaller (P < 0.05) in low-nutrient conditions (5 and 0.5 mg/l TOC). These results suggest that nutrient levels are a key factor in determining the persistence and spread of antibiotic resistance conferred by efflux pumps in the natural environment with trace amounts or no antibiotics.ImportanceThe widespread of antibiotic resistance has led to an increasing concern about the environmental and public health risks. Mechanisms associated with antibiotic resistance including efflux pumps often increase bacterial fitness cost. Our study showed that the fitness cost of ciprofloxacin resistance conferred by overexpression of MexCD-OprJ efflux pump significantly decreased under low-nutrient relative to high-nutrient conditions. The significance of our research is to reveal that nutrient levels are key factor in determining the persistence of antibiotic resistance conferred by efflux pumps under conditions with trace amounts or no antibiotics, which can be mediated by some mechanisms including MexD gene expression, SOURs differences, and rpoS gene regulation.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 255
Author(s):  
Salma M. Abdelaziz ◽  
Khaled M. Aboshanab ◽  
Ibrahim S. Yahia ◽  
Mahmoud A. Yassien ◽  
Nadia A. Hassouna

In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside acetyl transferase gene (aac-6’-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6’-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.


2020 ◽  
Author(s):  
Megan E Grund ◽  
Soo J Choi ◽  
Dudley H McNitt ◽  
Mariette Barbier ◽  
Gangqing Hu ◽  
...  

AbstractBacterial efflux pumps are an important pathogenicity trait because they extrude a variety of xenobiotics. Our laboratory previously identified in silico Burkholderia collagen-like protein 8 (Bucl8) in the Tier one select agents Burkholderia pseudomallei and Burkholderia mallei. We hypothesize that Bucl8, which contains two predicted tandem outer membrane efflux pump domains, is a component of a putative efflux pump. Unique to Bucl8, as compared to other outer membrane proteins, is the presence of an extended extracellular region containing a collagen-like (CL) domain and a non-collagenous C-terminus (Ct). Molecular modeling and circular dichroism spectroscopy with a recombinant protein, corresponding to this extracellular CL-Ct portion of Bucl8, demonstrated that it adopts a collagen triple helix, whereas functional assays screening for Bucl8 ligands identified binding to fibrinogen. Bioinformatic analysis of the bucl8 gene locus revealed it resembles a classical efflux-pump operon. The bucl8 gene is co-localized with downstream fusCDE genes encoding fusaric acid (FA) resistance, and with an upstream gene, designated as fusR, encoding a LysR-type transcriptional regulator. Using RT-qPCR, we defined the boundaries and transcriptional organization of the fusR-bucl8-fusCDE operon. We found exogenous FA induced bucl8 transcription over 80-fold in B. pseudomallei, while deletion of the entire bucl8 locus decreased the MIC of FA 4-fold in its isogenic mutant. We furthermore showed that the Bucl8 pump expressed in the heterologous Escherichia coli host confers FA resistance. On the contrary, the Bucl8 pump did not confer resistance to a panel of clinically-relevant antimicrobials in Burkholderia and E. coli. We finally demonstrated that deletion of the bucl8-locus drastically affects the growth of the mutant in L-broth. We determined that Bucl8 is a component of a novel tetrapartite efflux pump, which confers FA resistance, fibrinogen binding, and optimal growth.Author SummaryBurkholderia pseudomallei and Burkholderia mallei are highly infectious and multidrug resistant bacteria that are classified by the National Institute of Allergy and Infectious Diseases as Tier one select agents partly due to the intrinsic multidrug resistance associated with expression of the efflux pumps. To date, only few efflux pumps predicted in Burkholderia spp. have been studied in detail. In the current study we introduce Bucl8, an outer membrane component of an unreported putative efflux pump with a unique extended extracellular portion that forms a collagen triple helix and binds fibrinogen. We demonstrate Bucl8’s role in fusaric acid resistance by defining its operon via bioinformatic and transcriptional analyses, as well as by employing loss-of-function and gain-of-function genetic approaches. Our studies also implicate the Bucl8-associated pump in metabolic and physiologic homeostasis. Understanding how Bucl8 efflux pump contributes to Burkholderia pathology will foster development of pump inhibitors targeting transport mechanism or identifying potential surface-exposed vaccine targets.


1998 ◽  
Vol 42 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ramakrishnan Srikumar ◽  
Tatiana Kon ◽  
Naomasa Gotoh ◽  
Keith Poole

ABSTRACT The mexCD-oprJ and mexAB-oprM operons encode components of two distinct multidrug efflux pumps inPseudomonas aeruginosa. To assess the contribution of individual components to antibiotic resistance and substrate specificity, these operons and their component genes were cloned and expressed in Escherichia coli. Western immunoblotting confirmed expression of the P. aeruginosa efflux pump components in E. coli strains expressing and deficient in the endogenous multidrug efflux system (AcrAB), although only the ΔacrAB strain, KZM120, demonstrated increased resistance to antibiotics in the presence of the P. aeruginosa efflux genes. E. coli KZM120 expressing MexAB-OprM showed increased resistance to quinolones, chloramphenicol, erythromycin, azithromycin, sodium dodecyl sulfate (SDS), crystal violet, novobiocin, and, significantly, several β-lactams, which is reminiscent of the operation of this pump in P. aeruginosa. This confirmed previous suggestions that MexAB-OprM provides a direct contribution to β-lactam resistance via the efflux of this group of antibiotics. An increase in antibiotic resistance, however, was not observed when MexAB or OprM alone was expressed in KZM120. Thus, despite the fact that β-lactams act within the periplasm, OprM alone is insufficient to provide resistance to these agents. E. coli KZM120 expressing MexCD-OprJ also showed increased resistance to quinolones, chloramphenicol, macrolides, SDS, and crystal violet, though not to most β-lactams or novobiocin, again somewhat reminiscent of the antibiotic resistance profile of MexCD-OprJ-expressing strains ofP. aeruginosa. Surprisingly, E. coli KZM120 expressing MexCD alone also showed an increase in resistance to these agents, while an OprJ-expressing KZM120 failed to demonstrate any increase in antibiotic resistance. MexCD-mediated resistance, however, was absent in a tolC mutant of KZM120, indicating that MexCD functions in KZM120 in conjunction with TolC, the previously identified outer membrane component of the AcrAB-TolC efflux system. These data confirm that a tripartite efflux pump is necessary for the efflux of all substrate antibiotics and that the P. aeruginosa multidrug efflux pumps are functional and retain their substrate specificity in E. coli.


2008 ◽  
Vol 52 (9) ◽  
pp. 3202-3209 ◽  
Author(s):  
George P. Tegos ◽  
Kayo Masago ◽  
Fatima Aziz ◽  
Andrew Higginbotham ◽  
Frank R. Stermitz ◽  
...  

ABSTRACT Antimicrobial photodynamic inactivation (APDI) combines a nontoxic photoactivatable dye or photosensitizer (PS) with harmless visible light to generate singlet oxygen and reactive oxygen species that kill microbial cells. Cationic phenothiazinium dyes, such as toluidine blue O (TBO), are the only PS used clinically for APDI, and we recently reported that this class of PS are substrates of multidrug efflux pumps in both gram-positive and gram-negative bacteria. We now report that APDI can be significantly potentiated by combining the PS with an efflux pump inhibitor (EPI). Killing of Staphylococcus aureus mediated by TBO and red light is greatly increased by coincubation with known inhibitors of the major facilitator pump (NorA): the diphenyl urea INF271, reserpine, 5′-methoxyhydnocarpin, and the polyacylated neohesperidoside, ADH7. The potentiation effect is greatest in the case of S. aureus mutants that overexpress NorA and least in NorA null cells. Addition of the EPI before TBO has a bigger effect than addition of the EPI after TBO. Cellular uptake of TBO is increased by EPI. EPI increased photodynamic inactivation killing mediated by other phenothiazinium dyes, such as methylene blue and dimethylmethylene blue, but not that mediated by nonphenothiazinium PS, such as Rose Bengal and benzoporphyrin derivative. Killing of Pseudomonas aeruginosa mediated by TBO and light was also potentiated by the resistance nodulation division pump (MexAB-OprM) inhibitor phenylalanine-arginine beta-naphthylamide but to a lesser extent than for S. aureus. These data suggest that EPI could be used in combination with phenothiazinium salts and light to enhance their antimicrobial effect against localized infections.


2001 ◽  
Vol 183 (13) ◽  
pp. 3967-3973 ◽  
Author(s):  
Antonia Rojas ◽  
Estrella Duque ◽  
Gilberto Mosqueda ◽  
Geir Golden ◽  
Ana Hurtado ◽  
...  

ABSTRACT In Pseudomonas putida DOT-T1E multidrug efflux pumps of the resistance-nodulation-division family make a major contribution to solvent resistance. Two pumps have been identified: TtgABC, expressed constitutively, and TtgDEF, induced by aromatic hydrocarbons. A double mutant lacking both efflux pumps was able to survive a sudden toluene shock if and only if preinduced with small amounts of toluene supplied via the gas phase. In this article we report the identification and characterization in this strain of a third efflux pump, named TtgGHI. The ttgGHI genes form an operon that is expressed constitutively at high levels from a single promoter. In the presence of toluene the operon is expressed at an even higher level from two promoters, the constitutive one and a previously unreported one that is inducible and that partially overlaps the constitutive promoter. By site-directed mutagenesis we constructed a single ttgHmutant which was shown to be unable to survive sudden 0.3% (vol/vol) toluene shocks regardless of the preculture conditions. The mutation was transferred to single and double mutants to construct mutant strains in which two or all three pumps are knocked out. Survival analysis of induced and noninduced cells revealed that the TtgABC and TtgGHI pumps extruded toluene, styrene, m-xylene, ethylbenzene, and propylbenzene, whereas the TtgDEF pump removed only toluene and styrene. The triple mutant was hypersensitive to toluene, as shown by its inability to grow with toluene supplied via the vapor phase.


2021 ◽  
Vol 14 (6) ◽  
pp. 572
Author(s):  
Fernando Durães ◽  
Andreia Palmeira ◽  
Bárbara Cruz ◽  
Joana Freitas-Silva ◽  
Nikoletta Szemerédi ◽  
...  

The overexpression of efflux pumps is one of the causes of multidrug resistance, which leads to the inefficacy of drugs. This plays a pivotal role in antimicrobial resistance, and the most notable pumps are the AcrAB-TolC system (AcrB belongs to the resistance-nodulation-division family) and the NorA, from the major facilitator superfamily. In bacteria, these structures can also favor virulence and adaptation mechanisms, such as quorum-sensing and the formation of biofilm. In this study, the design and synthesis of a library of thioxanthones as potential efflux pump inhibitors are described. The thioxanthone derivatives were investigated for their antibacterial activity and inhibition of efflux pumps, biofilm formation, and quorum-sensing. The compounds were also studied for their potential to interact with P-glycoprotein (P-gp, ABCB1), an efflux pump present in mammalian cells, and for their cytotoxicity in both mouse fibroblasts and human Caco-2 cells. The results concerning the real-time ethidium bromide accumulation may suggest a potential bacterial efflux pump inhibition, which has not yet been reported for thioxanthones. Moreover, in vitro studies in human cells demonstrated a lack of cytotoxicity for concentrations up to 20 µM in Caco-2 cells, with some derivatives also showing potential for P-gp modulation.


Sign in / Sign up

Export Citation Format

Share Document