scholarly journals The White Cell Response to Pheromone Is a General Characteristic of Candida albicans Strains

2008 ◽  
Vol 8 (2) ◽  
pp. 251-256 ◽  
Author(s):  
Nidhi Sahni ◽  
Song Yi ◽  
Claude Pujol ◽  
David R. Soll

ABSTRACT For Candida albicans, evidence has suggested that the mating pheromones activate not only the mating response in mating-competent opaque cells but also a unique response in mating-incompetent white cells that includes increased cohesion and adhesion, enhanced biofilm formation, and expression of select mating-related and white cell-specific genes. On the basis of a recent microarray analysis comparing changes in the global expression patterns of white cells in two strains in response to α-pheromone, however, skepticism concerning the validity and generality of the white cell response has been voiced. Here, we present evidence that the response occurs in all tested media (Lee's, RPMI, SpiderM, yeast extract-peptone-dextrose, and a synthetic medium) and in all of the 27 tested strains, including a/a and α/α strains, derivatives of the common laboratory strain SC5314, and representatives from all of the five major clades. The white cell response to pheromone is therefore a general characteristic of MTL-homozygous strains of C. albicans.

mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Timea Marton ◽  
Adeline Feri ◽  
Pierre-Henri Commere ◽  
Corinne Maufrais ◽  
Christophe d’Enfert ◽  
...  

ABSTRACTThe heterozygous diploid genome ofCandida albicansis highly plastic, with frequent loss of heterozygosity (LOH) events. In the SC5314 laboratory strain, while LOH events are ubiquitous, a chromosome homozygosis bias is observed for certain chromosomes, whereby only one of the two homologs can occur in the homozygous state. This suggests the occurrence of recessive lethal allele(s) (RLA) preventing large-scale LOH events on these chromosomes from being stably maintained. To verify the presence of an RLA on chromosome 7 (Chr7), we utilized a system that allows (i) DNA double-strand break (DSB) induction on Chr7 by the I-SceI endonuclease and (ii) detection of the resulting long-range homozygosis. I-SceI successfully induced a DNA DSB on both Chr7 homologs, generally repaired by gene conversion. Notably, cells homozygous for the right arm of Chr7B were not recovered, confirming the presence of RLA(s) in this region. Genome data mining for RLA candidates identified a premature nonsense-generating single nucleotide polymorphism (SNP) within the HapB allele of C7_03400c whoseSaccharomycescerevisiaeortholog encodes the essential Mtr4 RNA helicase. Complementation with a wild-type copy ofMTR4rescued cells homozygous for the right arm of Chr7B, demonstrating that themtr4K880*RLA is responsible for the Chr7 homozygosis bias in strain SC5314. Furthermore, we observed that the major repeat sequences (MRS) on Chr7 acted as hot spots for interhomolog recombination. Such recombination events provideC. albicanswith increased opportunities to survive DNA DSBs whose repair can lead to homozygosis of recessive lethal or deleterious alleles. This might explain the maintenance of MRS in this species.IMPORTANCECandida albicansis a major fungal pathogen, whose mode of reproduction is mainly clonal. Its genome is highly tolerant to rearrangements, in particular loss of heterozygosity events, known to unmask recessive lethal and deleterious alleles in heterozygous diploid organisms such asC. albicans. By combining a site-specific DSB-inducing system and mining genome sequencing data of 182 C. albicansisolates, we were able to ascribe the chromosome 7 homozygosis bias of theC. albicanslaboratory strain SC5314 to an heterozygous SNP introducing a premature STOP codon in theMTR4gene. We have also proposed genome-wide candidates for new recessive lethal alleles. We additionally observed that the major repeat sequences (MRS) on chromosome 7 acted as hot spots for interhomolog recombination. Maintaining MRS inC. albicanscould favor haplotype exchange, of vital importance to LOH events, leading to homozygosis of recessive lethal or deleterious alleles that inevitably accumulate upon clonality.


Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Clayton B. Green ◽  
Georgina Cheng ◽  
Jyotsna Chandra ◽  
Pranab Mukherjee ◽  
Mahmoud A. Ghannoum ◽  
...  

An RT-PCR assay was developed to analyse expression patterns of genes in the Candida albicans ALS (agglutinin-like sequence) family. Inoculation of a reconstituted human buccal epithelium (RHE) model of mucocutaneous candidiasis with strain SC5314 showed destruction of the epithelial layer by C. albicans and also formation of an upper fungal layer that had characteristics similar to a biofilm. RT-PCR analysis of total RNA samples extracted from C. albicans-inoculated buccal RHE showed that ALS1, ALS2, ALS3, ALS4, ALS5 and ALS9 were consistently detected over time as destruction of the RHE progressed. Detection of transcripts from ALS7, and particularly from ALS6, was more sporadic, but not associated with a strictly temporal pattern. The expression pattern of ALS genes in C. albicans cultures used to inoculate the RHE was similar to that observed in the RHE model, suggesting that contact of C. albicans with buccal RHE does little to alter ALS gene expression. RT-PCR analysis of RNA samples extracted from model denture and catheter biofilms showed similar gene expression patterns to the buccal RHE specimens. Results from the RT-PCR analysis of biofilm RNA specimens were consistent between various C. albicans strains during biofilm development and were comparable to gene expression patterns in planktonic cells. The RT-PCR assay described here will be useful for analysis of human clinical specimens and samples from other disease models. The method will provide further insight into the role of ALS genes and their encoded proteins in the diverse interactions between C. albicans and its host.


2017 ◽  
Vol 96 (8) ◽  
pp. 917-923 ◽  
Author(s):  
S. Aguayo ◽  
H. Marshall ◽  
J. Pratten ◽  
D. Bradshaw ◽  
J.S. Brown ◽  
...  

Denture-associated stomatitis is a common candidal infection that may give rise to painful oral symptoms, as well as be a reservoir for infection at other sites of the body. As poly (methyl methacrylate) (PMMA) remains the main material employed in the fabrication of dentures, the aim of this research was to evaluate the adhesion of Candida albicans cells onto PMMA surfaces by employing an atomic force microscopy (AFM) single-cell force spectroscopy (SCFS) technique. For experiments, tipless AFM cantilevers were functionalized with PMMA microspheres and probed against C. albicans cells immobilized onto biopolymer-coated substrates. Both a laboratory strain and a clinical isolate of C. albicans were used for SCFS experiments. Scanning electron microscopy (SEM) and AFM imaging of C. albicans confirmed the polymorphic behavior of both strains, which was dependent on growth culture conditions. AFM force-spectroscopy results showed that the adhesion of C. albicans to PMMA is morphology dependent, as hyphal tubes had increased adhesion compared with yeast cells ( P < 0.05). C. albicans budding mother cells were found to be nonadherent, which contrasts with the increased adhesion observed in the tube region. Comparison between strains demonstrated increased adhesion forces for a clinical isolate compared with the lab strain. The clinical isolate also had increased survival in blood and reduced sensitivity to complement opsonization, providing additional evidence of strain-dependent differences in Candida-host interactions that may affect virulence. In conclusion, PMMA-modified AFM probes have shown to be a reliable technique to characterize the adhesion of C. albicans to acrylic surfaces.


Author(s):  
Marcel Patindoilba Sawadogo ◽  
Adama Zida ◽  
Issiaka Soulama ◽  
Samuel S Sermé ◽  
Thierry Kiswendsida Guiguemdé ◽  
...  

The aim of this study is to have an idea on the molecular mechanisms of C. albicans resistance to fluconazole in Burkina Faso, by studying the polymorphism of the ERG11 gene, and its implication in the C. albicans virulence and resistance in vivo according to the Galleria mellonella model; (2) Methods: Ten (10) clinical strains including, 5 resistant and 5 susceptible and 1 virulent and susceptible reference strain SC5314 are used. For the estimation of virulence, the larvae were inoculated with 10 &mu;L of C. albicans cell suspension at variable concentrations: 2,5.105, 5.105, 1.106, and 5.106 CFU/larva of each strain. For the in vivo efficacy study, fluconazole was administered at 1, 4 and 16 mg/kg respectively to G. mellonella larvae, after infection by inoculum 5.106 CFU / larvae of each strain; (3) Results: Six (6) non-silent mutations in the ERG11 gene (K143R, F145L, G307S, S405F, G448E, V456I on ERG11p) were found in 4 resistant isolates. Larval mortality depended on fungal burden and strain. The inoculum 5.106 CFU caused 100% mortality in 2 days for the 2 CAAL-1 and CAAL-2 strains carrying the F145L mutation, in 3 days for the reference strain SC5314, in 4 days for the ensemble of resistant strains, and in 5 days for the ensemble of susceptible strains. The comparison of the mortality due to the reference strain SC5314 CFU / larva and the average mortality due to the two mutant F145L strains, shows a significant difference (P &lt;0.05).Fluconazole significantly protected (P&gt; 0.05) the larvae from infection by susceptible strains and the reference strain. However, 100% mortality in 6 days after injection of the resistant strains, was observed (4) Conclusions: Certain mutations in the ERG11 gene such as the F145L mutation are thought to be a source of increased virulence in Candida albicans. Fluconazole effectively protected larvae from infection by susceptible strains in vivo, unlike resistant strain


Author(s):  
Upasana Bhumbla ◽  
Amit Gupta

Background: Systemic candidiasis is associated with a high crude mortality rate, even with first line antifungal therapy. C. albicans is the predominant cause of invasive fungal diseases which is a serious public health issue. The main objective was to assess the reliability of different media for germ tube production in Candida albicans isolated from various clinically diagnosed pulmonary samples.Methods: All Candida isolates were identified and speciated by conventional methods such as Gram’s staining, germ tube test, chlamydospore formation on corn meal agar, sugar fermentation test, sugar assimilation test, and growth on Hi-chrome candida agar.Results: Out of 108 clinical isolates of Candida albicans, 5 different methods were used for germ tube production. Pooled human sera showed 93/108 (86.1%) was the most sensitive method wherein YEPD (yeast extract peptone dextrose) broth 91/108 (84.7%) was the reliable and easy method for detection of germ tube, followed by trypticase soy broth 81/108 (81.4%); peptone water 80/108 (74.7%) and 2% sucrose 71/108 (65.7%).Conclusions: YPED broth is found to be a better serum free substrate and subsequently for the presumptive differentiation of C. albicans from non-albicans candida (NAC), without the extensive time required for the preparation and testing of pooled human serum. Furthermore, this medium is commercially available, more stable, effective, and is not bio hazardous.


2014 ◽  
Vol 13 (12) ◽  
pp. 1557-1566 ◽  
Author(s):  
Shen-Huan Liang ◽  
Jen-Hua Cheng ◽  
Fu-Sheng Deng ◽  
Pei-An Tsai ◽  
Ching-Hsuan Lin

ABSTRACTCandida albicansis a commensal in heathy people but has the potential to become an opportunistic pathogen and is responsible for half of all clinical infections in immunocompromised patients. Central to understandingC. albicansbehavior is the white-opaque phenotypic switch, in which cells can undergo an epigenetic transition between the white state and the opaque state. The phenotypic switch regulates multiple properties, including biofilm formation, virulence, mating, and fungus-host interactions. Switching between the white and opaque states is associated with many external stimuli, such as oxidative stress, pH, andN-acetylglucosamine, and is directly regulated by the Wor1 transcriptional circuit. The Hog1 stress-activated protein kinase (SAPK) pathway is recognized as the main pathway for adapting to environmental stress inC. albicans. In this work, we first show that loss of theHOG1gene ina/aand α/α cells, but nota/α cells, results in 100% white-to-opaque switching when cells are grown on synthetic medium, indicating that switching is repressed by thea1/α2 heterodimer that repressesWOR1gene expression. Indeed, switching in thehog1Δ strain was dependent on the presence ofWOR1, as ahog1Δwor1Δ strain did not show switching to the opaque state. Deletion ofPBS2andSSK2also resulted inC. albicanscells switching from white to opaque with 100% efficiency, indicating that the entire Hog1 SAPK pathway is involved in regulating this unique phenotypic transition. Interestingly, all Hog1 pathway mutants also caused defects in shmoo formation and mating efficiencies. Overall, this work reveals a novel role for the Hog1 SAPK pathway in regulating white-opaque switching and sexual behavior inC. albicans.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Danielle do Carmo Ferreira Bruno ◽  
Thais Fernanda Bartelli ◽  
Marcelo R. S. Briones

Polymicrobial infections with mixed-species biofilms are important health problems because of increased antimicrobial resistance and worse patient outcomes than with monomicrobial infections. Here, we present the whole-genome sequence of Staphylococcus epidermidis strain GTH12, which was cocultured with the yeast Candida albicans SC5314 (generating C. albicans strain SC5314 GTH12), thus providing genomic information on polymicrobial infections.


2020 ◽  
Vol 8 (11) ◽  
pp. 1730
Author(s):  
Qi-Kun Yu ◽  
Lian-Tao Han ◽  
Yu-Juan Wu ◽  
Tong-Bao Liu

Cryptococcus neoformans is a basidiomycete human fungal pathogen causing lethal meningoencephalitis, mainly in immunocompromised patients. Oxidoreductases are a class of enzymes that catalyze redox, playing a crucial role in biochemical reactions. In this study, we identified one Cryptococcus oxidoreductase-like protein-encoding gene OLP1 and investigated its role in the sexual reproduction and virulence of C. neoformans. Gene expression patterns analysis showed that the OLP1 gene was expressed in each developmental stage of Cryptococcus, and the Olp1 protein was located in the cytoplasm of Cryptococcus cells. Although it produced normal major virulence factors such as melanin and capsule, the olp1Δ mutants showed growth defects on the yeast extract peptone dextrose (YPD) medium supplemented with lithium chloride (LiCl) and 5-fluorocytosine (5-FC). The fungal mating analysis showed that Olp1 is also essential for fungal sexual reproduction, as olp1Δ mutants show significant defects in hyphae growth and basidiospores production during bisexual reproduction. The fungal nuclei imaging showed that during the bilateral mating of olp1Δ mutants, the nuclei failed to undergo meiosis after fusion in the basidia, indicating that Olp1 is crucial for regulating meiosis during mating. Moreover, Olp1 was also found to be required for fungal virulence in C. neoformans, as the olp1Δ mutants showed significant virulence attenuation in a murine inhalation model. In conclusion, our results showed that the oxidoreductase-like protein Olp1 is required for both fungal sexual reproduction and virulence in C. neoformans.


2006 ◽  
Vol 5 (1) ◽  
pp. 192-202 ◽  
Author(s):  
Daniel Dignard ◽  
Malcolm Whiteway

ABSTRACT Candida albicans contains a functional mating response pathway that is similar to the well-studied system of Saccharomyces cerevisiae. We have characterized a regulator of G protein signaling (RGS) homolog in C. albicans with sequence similarity to the SST2 gene of Saccharomyces cerevisiae. Disruption of this gene, which had been designated SST2, causes an opaque MTL a/MTL a derivative of strain SC5314 to show hypersensitivity to the C. albicans α-factor. This hypersensitivity generates an enhanced cell cycle arrest detected in halo assays but reduces the overall mating efficiency of the cells. Transcriptional profiling of the pheromone-regulated gene expression in the sst2 mutant shows a pattern of gene induction similar to that observed in wild-type cells, but the responsiveness is heightened. This involvement of an RGS in the sensitivity to pheromone is consistent with the prediction that the mating response pathway in C. albicans requires the activation of a heterotrimeric G protein.


2010 ◽  
Vol 9 (11) ◽  
pp. 1690-1701 ◽  
Author(s):  
Kevin Alby ◽  
Dana Schaefer ◽  
Racquel Kim Sherwood ◽  
Stephen K. Jones ◽  
Richard J. Bennett

ABSTRACT Mating in hemiascomycete yeasts involves the secretion of pheromones that induce sexual differentiation in cells of the opposite mating type. Studies in Saccharomyces cerevisiae have revealed that a subpopulation of cells experiences cell death during exposure to pheromone. In this work, we tested whether the phenomenon of pheromone-induced death (PID) also occurs in the opportunistic pathogen Candida albicans. Mating in C. albicans is uniquely regulated by white-opaque phenotypic switching; both cell types respond to pheromone, but only opaque cells undergo the morphological transition and cell conjugation. We show that approximately 20% of opaque cells, but not white cells, of laboratory strain SC5314 experience pheromone-induced death. Furthermore, analysis of mutant strains revealed that PID was significantly reduced in strains lacking Fig1 or Fus1 transmembrane proteins that are induced during the mating process and, we now show, are necessary for efficient mating in C. albicans. The level of PID was also Ca2+ dependent, as chelation of Ca2+ ions increased cell death to almost 50% of the population. However, in contrast to S. cerevisiae PID, pheromone-induced killing of C. albicans cells was largely independent of signaling via the Ca2+-dependent protein phosphatase calcineurin, even when combined with the loss of Cmk1 and Cmk2 proteins. Finally, we demonstrate that levels of PID vary widely between clinical isolates of C. albicans, with some strains experiencing close to 70% cell death. We discuss these findings in light of the role of prodeath and prosurvival pathways operating in yeast cells undergoing the morphological response to pheromone.


Sign in / Sign up

Export Citation Format

Share Document