scholarly journals Overlapping Roles for Interleukin-36 Cytokines in Protective Host Defense against MurineLegionella pneumophilaPneumonia

2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Yuta Nanjo ◽  
Michael W. Newstead ◽  
Tetsuji Aoyagi ◽  
Xianying Zeng ◽  
Kazuhisa Takahashi ◽  
...  

ABSTRACTLegionella pneumophilacauses life-threatening pneumonia culminating in acute lung injury. Innate and adaptive cytokines play an important role in host defense againstL. pneumophilainfection. Interleukin-36 (IL-36) cytokines are recently described members of the larger IL-1 cytokine family known to exert potent inflammatory effects. In this study, we elucidated the role for IL-36 cytokines in experimental pneumonia caused byL. pneumophila. Intratracheal (i.t.) administration ofL. pneumophilainduced the upregulation of both IL-36α and IL-36γ mRNA and protein production in the lung. Compared to the findings forL. pneumophila-infected wild-type (WT) mice, the i.t. administration ofL. pneumophilato IL-36 receptor-deficient (IL-36R−/−) mice resulted in increased mortality, a delay in lung bacterial clearance, increasedL. pneumophiladissemination to extrapulmonary organs, and impaired glucose homeostasis. Impaired lung bacterial clearance in IL-36R−/−mice was associated with a significantly reduced accumulation of inflammatory cells and the decreased production of proinflammatory cytokines and chemokines.Ex vivo, reduced expression of costimulatory molecules and impaired M1 polarization were observed in alveolar macrophages isolated from infected IL-36R−/−mice compared to macrophages from WT mice. WhileL. pneumophila-induced mortality in IL-36α- or IL-36γ-deficient mice was not different from that in WT animals, antibody-mediated neutralization of IL-36γ in IL-36α−/−mice resulted in mortality similar to that observed in IL-36R−/−mice, indicating redundant and overlapping roles for these cytokines in experimental murineL. pneumophilapneumonia.

2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Zheng Pang ◽  
Renee Raudonis ◽  
Craig McCormick ◽  
Zhenyu Cheng

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that is a common cause of nosocomial infections. The molecular mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Early growth response 1 (Egr-1) is a zinc-finger transcription factor that controls inflammatory responses. Here, we characterized the role of Egr-1 in host defense against P. aeruginosa infection in a mouse model of acute bacterial pneumonia. Egr-1 expression was rapidly and transiently induced in response to P. aeruginosa infection. Egr-1-deficient mice displayed decreased mortality, reduced levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-1β [IL-1β], IL-6, IL-12, and IL-17), and enhanced bacterial clearance from the lung. Egr-1 deficiency caused diminished NF-κB activation in P. aeruginosa-infected macrophages independently of IκBα phosphorylation. A physical interaction between Egr-1 and NF-κB p65 was found in P. aeruginosa-infected macrophages, suggesting that Egr-1 could be required for assembly of heterodimeric transcription factors that direct synthesis of inflammatory mediators. Interestingly, Egr-1 deficiency had no impact on neutrophil recruitment in vivo due to its differential effects on chemokine production, which included diminished accumulation of KC (CXCL1), MIP2 (CXCL2), and IP-10 (CXCL10) and increased accumulation of LIX (CXCL5). Importantly, Egr-1-deficient macrophages and neutrophils displayed significant increases in nitric oxide production and bacterial killing ability that correlated with enhanced bacterial clearance in Egr-1-deficient mice. Together, these findings suggest that Egr-1 plays a detrimental role in host defense against P. aeruginosa acute lung infection by promoting systemic inflammation and negatively regulating the nitric oxide production that normally assists with bacterial clearance.


2000 ◽  
Vol 68 (9) ◽  
pp. 5234-5240 ◽  
Author(s):  
Catherine Newton ◽  
Shannon McHugh ◽  
Ray Widen ◽  
Noriya Nakachi ◽  
Thomas Klein ◽  
...  

ABSTRACT Infection of BALB/c mice with a sublethal concentration ofLegionella pneumophila causes an acute disease that is resolved by innate immune responses. The infection also initiates the development of adaptive Th1 responses that protect the mice from challenge infections. To study the early responses, cytokines induced during the first 24 h after infection were examined. In the serum, interleukin-12 (IL-12) was detectable by 3 h and peaked at 10 h, while gamma interferon was discernible by 5 h and peaked at 8 h. Similar patterns were observed in ex vivo cultures of splenocytes. A transient IL-4 response was also detected by 3 h postinfection in ex vivo cultures. BALB/c IL-4-deficient mice were more susceptible to L. pneumophila infection than were wild-type mice. The infection induced higher serum levels of acute-phase cytokines (tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6), and reducing TNF-α levels with antibodies protected the mice from death. Moreover, the addition of IL-4 to L. pneumophila-infected macrophage cultures suppressed the production of these cytokines. Thus, the lack of IL-4 in the deficient mice resulted in unchecked TNF-α production, which appeared to cause the mortality. Monocyte chemoattractant protein-1 (MCP-1), a chemokine that is induced by IL-4 during Listeria monocytogenesinfection, was detected at between 2 and 30 h after infection. However, MCP-1 did not appear to be induced by IL-4 or to be required for the TNF-α regulation by IL-4. The data suggest that the early increase in IL-4 serves to regulate the mobilization of acute phase cytokines and thus controls the potential harmful effects of these cytokines.


2011 ◽  
Vol 80 (1) ◽  
pp. 410-417 ◽  
Author(s):  
Melissa A. Gessner ◽  
Jessica L. Werner ◽  
Lauren M. Lilly ◽  
Michael P. Nelson ◽  
Allison E. Metz ◽  
...  

ABSTRACTWe have previously reported that mice deficient in the beta-glucan receptor Dectin-1 displayed increased susceptibility toAspergillus fumigatuslung infection in the presence of lower interleukin 23 (IL-23) and IL-17A production in the lungs and have reported a role for IL-17A in lung defense. As IL-23 is also thought to control the production of IL-22, we examined the role of Dectin-1 in IL-22 production, as well as the role of IL-22 in innate host defense againstA. fumigatus. Here, we show that Dectin-1-deficient mice demonstrated significantly reduced levels of IL-22 in the lungs early afterA. fumigatuschallenge. Culturing cells from enzymatic lung digestsex vivofurther demonstrated Dectin-1-dependent IL-22 production. IL-22 production was additionally found to be independent of IL-1β, IL-6, or IL-18 but required IL-23. The addition of recombinant IL-23 augmented IL-22 production in wild-type (WT) lung cells and rescued IL-22 production by lung cells from Dectin-1-deficient mice.In vivoneutralization of IL-22 in the lungs of WT mice resulted in impairedA. fumigatuslung clearance. Moreover, mice deficient in IL-22 also demonstrated a higher lung fungal burden afterA. fumigatuschallenge in the presence of impaired IL-1α, tumor necrosis factor alpha (TNF-α), CCL3/MIP-1α, and CCL4/MIP-1β production and lower neutrophil recruitment, yet intact IL-17A production. We further show that lung lavage fluid collected from bothA. fumigatus-challenged Dectin-1-deficient and IL-22-deficient mice had compromised anti-fungal activity againstA. fumigatus in vitro. Although lipocalin 2 production was observed to be Dectin-1 and IL-22 dependent, lipocalin 2-deficient mice did not demonstrate impairedA. fumigatusclearance. Moreover, lungS100a8,S100a9, andReg3gmRNA expression was not lower in either Dectin-1-deficient or IL-22-deficient mice. Collectively, our results indicate that early innate lung defense againstA. fumigatusis mediated by Dectin-1-dependent IL-22 production.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Satomi Yogosawa ◽  
Makiko Ohkido ◽  
Takuro Horii ◽  
Yasumasa Okazaki ◽  
Jun Nakayama ◽  
...  

AbstractCongenital malformations cause life-threatening diseases in pediatrics, yet the molecular mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice display congenital malformations in multiple organs. Transcriptome analysis reveals molecular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to altered airway branching and insufficient alveolar development. Furthermore, the Foxf1 expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes, which are necessary for proper airway and alveolar development. In ex vivo lung culture system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for embryogenesis and its disruption results in congenital malformation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Liu ◽  
Jozef Zienkiewicz ◽  
Kelli L. Boyd ◽  
Taylor E. Smith ◽  
Zhi-Qi Xu ◽  
...  

AbstractHyperlipidemia, the hallmark of Metabolic Syndrome that afflicts millions of people worldwide, exacerbates life-threatening infections. We present a new evidence for the mechanism of hyperlipidemic hypersensitivity to microbial inflammation caused by pathogen-derived inducer, LPS. We demonstrate that hyperlipidemic animals succumbed to a non-lethal dose of LPS whereas normolipidemic controls survived. Strikingly, survival of hyperlipidemic animals was restored when the nuclear import of stress-responsive transcription factors (SRTFs), Sterol Regulatory Element-Binding Proteins (SREBPs), and Carbohydrate-Responsive Element-Binding Proteins (ChREBPs) was impeded by targeting the nuclear transport checkpoint with cell-penetrating, biselective nuclear transport modifier (NTM) peptide. Furthermore, the burst of proinflammatory cytokines and chemokines, microvascular endothelial injury in the liver, lungs, heart, and kidneys, and trafficking of inflammatory cells were also suppressed. To dissect the role of nuclear transport signaling pathways we designed and developed importin-selective NTM peptides. Selective targeting of the importin α5, ferrying SRTFs and ChREBPs, protected 70–100% hyperlipidemic animals. Targeting importin β1, that transports SREBPs, was only effective after 3-week treatment that lowered blood triglycerides, cholesterol, glucose, and averted fatty liver. Thus, the mechanism of hyperlipidemic hypersensitivity to lethal microbial inflammation depends on metabolic and proinflammatory transcription factors mobilization, which can be counteracted by targeting the nuclear transport checkpoint.


2011 ◽  
Vol 79 (5) ◽  
pp. 1863-1872 ◽  
Author(s):  
Jeffrey B. Brown ◽  
Paul Cheresh ◽  
Tatiana Goretsky ◽  
Elizabeth Managlia ◽  
Gery R. Grimm ◽  
...  

ABSTRACTCitrobacter rodentiuminfection of mice induces cell-mediated immune responses associated with crypt hyperplasia and epithelial β-catenin signaling. Recent data suggest that phosphatidylinositol-3-kinase (PI3K)/Akt signaling cooperates with Wnt to activate β-catenin in intestinal stem and progenitor cells through phosphorylation at Ser552 (P-β-catenin552). Our aim was to determine whether epithelial PI3K/Akt activation is required for β-catenin signaling and host defense againstC. rodentium. C57BL/6 mice were infected withC. rodentiumand treated with dimethyl sulfoxide (DMSO) (vehicle control) or with the PI3K inhibitor LY294002 or wortmannin. The effects of infection on PI3K activation and β-catenin signaling were analyzed by immunohistochemistry. The effects of PI3K inhibition on host defense were analyzed by the quantification of splenic and colon bacterial clearance, and adaptive immune responses were measured by real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Increased numbers of P-β-catenin552-stained epithelial cells were found throughout expanded crypts inC. rodentiumcolitis. We show that the inhibition of PI3K signaling attenuates epithelial Akt activation, the Ser552 phosphorylation and activation of β-catenin, and epithelial cell proliferative responses duringC. rodentiuminfection. PI3K inhibition impairs bacterial clearance despite having no impact on mucosal cytokine (gamma interferon [IFN-γ], tumor necrosis factor [TNF], interleukin-17 [IL-17], and IL-1β) or chemokine (CXCL1, CXCL5, CXCL9, and CXCL10) induction. The results suggest that the host defense againstC. rodentiumrequires epithelial PI3K activation to induce Akt-mediated β-catenin signaling and the clearance ofC. rodentiumindependent of adaptive immune responses.


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Jeffrey Bulger ◽  
Ulrike MacDonald ◽  
Ruth Olson ◽  
Janet Beanan ◽  
Thomas A. Russo

ABSTRACT Hypervirulent Klebsiella pneumoniae (hvKP) is an emerging pathotype that is capable of causing tissue-invasive and organ- and life-threatening infections in healthy individuals from the community. Knowledge on the virulence factors specific to hvKP is limited. In this report, we describe a new factor (PEG344) that increases the virulence of hvKP strain hvKP1. peg-344 is present on the hvKP1 virulence plasmid, is broadly prevalent among hvKP strains, and has increased RNA abundance when grown in human ascites. An isogenic derivative of hvKP1 (hvKP1Δpeg-344) was constructed and compared with its wild-type parent strain in in vitro, ex vivo, and infection model studies. Both survival and competition experiments with outbred CD1 mice demonstrated that PEG344 was required for full virulence after pulmonary challenge but, interestingly, not after subcutaneous challenge. In silico analysis suggested that PEG344 serves as an inner membrane transporter. Compared to hvKP1, a small but significant decrease in the growth/survival of hvKP1Δpeg-344 was observed in human ascites, but resistance to the bactericidal activity of complement was similar. These data suggested that PEG344 may transport an unidentified growth factor present in ascites. The data presented are important since they expand our limited knowledge base on virulence factors unique to hvKP, which is needed to lay the groundwork for translational approaches to prevent or treat these devastating infections.


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
J. Beaudet ◽  
E. R. Tulman ◽  
K. Pflaum ◽  
X. Liao ◽  
G. F. Kutish ◽  
...  

ABSTRACT Mycoplasma gallisepticum, the primary etiologic agent of chronic respiratory disease (CRD) in poultry, leads to prolonged recruitment and activation of inflammatory cells in the respiratory mucosa. This is consistent with the current model of immune dysregulation that ostensibly allows the organism to evade clearance mechanisms and establish chronic infection. To date, studies using quantitative reverse transcription-PCR (qRT-PCR) and microarrays have shown a significant transient upregulation of cytokines and chemokines from tracheal epithelial cells (TECs) in vitro and tracheal tissue ex vivo in response to virulent strain Rlow that contributes to the infiltration of inflammatory cells into the tracheal mucosa. To expand upon these experiments, RNA was isolated from tracheas of 20 chickens infected with M. gallisepticum Rlow and 20 mock-infected animals at days 1, 3, 5, and 7 postinoculation, and samples were analyzed for differential gene expression using Illumina RNA sequencing. A rapid host response was observed 24 h postinfection, with over 2,500 significantly differentially expressed genes on day 3, the peak of infection. Many of these genes have immune-related functions involved in signaling pathways, including Toll-like receptor (TLR), mitogen-activated protein kinase, Jak-STAT, and the nucleotide oligomerization domain-like receptor pathways. Of interest was the increased expression of numerous cell surface receptors, including TLR4 and TLR15, which may contribute to the production of cytokines. Metabolic pathways were also activated on days 1 and 3 postinfection, ostensibly due to epithelial cell distress that occurs upon infection. Early perturbations in tissue-wide gene expression, as observed here, may underpin a profound immune dysregulation, setting the stage for disease manifestations characteristic of M. gallisepticum infection.


2006 ◽  
Vol 74 (6) ◽  
pp. 3325-3333 ◽  
Author(s):  
Kristina A. Archer ◽  
Craig R. Roy

ABSTRACT Legionella pneumophila is a gram-negative facultative intracellular parasite of macrophages. Although L. pneumophila is the causative agent of a severe pneumonia known as Legionnaires' disease, it is likely that most infections caused by this organism are cleared by the host innate immune system. It is predicted that host pattern recognition proteins belonging to the Toll-like receptor (TLR) family are involved in the protective innate immune responses. We examined the role of TLR-mediated responses in L. pneumophila detection and clearance using genetically altered mouse hosts in which the macrophages are permissive for L. pneumophila intracellular replication. Our data demonstrate that cytokine production by bone marrow-derived macrophages (BMMs) in response to L. pneumophila infection requires the TLR adapter protein MyD88 and is reduced in the absence of TLR2 but not in the absence of TLR4. Bacterial growth ex vivo in BMMs from MyD88-deficient mice was not enhanced compared to bacterial growth ex vivo in BMMs from heterozygous littermate controls. Wild-type mice were able to clear L. pneumophila from the lung, whereas respiratory infection of MyD88-deficient mice caused death that resulted from robust bacterial replication and dissemination. In contrast to an infection with virulent L. pneumophila, MyD88-deficient mice were able to clear infections with L. pneumophila dotA mutants, indicating that MyD88-independent responses in the lung are sufficient to clear bacteria that are unable to replicate intracellularly. In vivo growth of L. pneumophila was enhanced in the lungs of TLR2-deficient mice, which resulted in a delay in bacterial clearance. No significant differences were observed in the growth and clearance of L. pneumophila in the lungs of TLR4-deficient mice and heterozygous littermate control mice. Our data indicate that MyD88 is crucial for eliciting a protective innate immune response against virulent L. pneumophila and that TLR2 is one of the pattern recognition receptors involved in initiating this MyD88-dependent response.


2011 ◽  
Vol 79 (7) ◽  
pp. 2567-2577 ◽  
Author(s):  
Gayathriy Balamayooran ◽  
Sanjay Batra ◽  
Theivanthiran Balamayooran ◽  
Shanshan Cai ◽  
Samithamby Jeyaseelan

ABSTRACTNeutrophil accumulation is a critical event to clear bacteria. Since uncontrolled neutrophil recruitment can cause severe lung damage, understanding neutrophil trafficking mechanisms is important to attenuate neutrophil-mediated damage. While monocyte chemoattractant protein 1 (MCP-1) is known to be a monocyte chemoattractant, its role in pulmonary neutrophil-mediated host defense against Gram-negative bacterial infection is not understood. We hypothesized that MCP-1/chemokine (C-C motif) ligand 2 is important for neutrophil-mediated host defense. Reduced bacterial clearance in the lungs was observed in MCP-1−/−mice followingEscherichia coliinfection. Neutrophil influx, along with cytokines/chemokines, leukotriene B4(LTB4), and vascular cell adhesion molecule 1 levels in the lungs, was reduced in MCP-1−/−mice after infection.E. coli-induced activation of NF-κB and mitogen-activated protein kinases in the lung was also reduced in MCP-1−/−mice. Administration of intratracheal recombinant MCP-1 (rMCP-1) to MCP-1−/−mice induced pulmonary neutrophil influx and cytokine/chemokine responses in the presence or absence ofE. coliinfection. Ourin vitromigration experiment demonstrates MCP-1-mediated neutrophil chemotaxis. Notably, chemokine receptor 2 is expressed on lung and blood neutrophils, which are increased uponE. coliinfection. Furthermore, our findings show that neutrophil depletion impairsE. coliclearance and that exogenous rMCP-1 after infection improves bacterial clearance in the lungs. Overall, these new findings demonstrate thatE. coli-induced MCP-1 causes neutrophil recruitment directly via chemotaxis as well as indirectly via modulation of keratinocyte cell-derived chemokine, macrophage inflammatory protein 2, and LTB4.


Sign in / Sign up

Export Citation Format

Share Document