scholarly journals Toll-Like Receptor 2 Recognition of the Microsporidia Encephalitozoon spp. Induces Nuclear Translocation of NF-κB and Subsequent Inflammatory Responses

2008 ◽  
Vol 76 (10) ◽  
pp. 4737-4744 ◽  
Author(s):  
Jeffrey Fischer ◽  
Colby Suire ◽  
Hollie Hale-Donze

ABSTRACT Microsporidia are obligate intracellular parasites that are ubiquitous in nature and have been recognized as causing an important emerging disease among immunocompromised individuals. Limited knowledge exists about the immune response against these organisms, and virtually nothing is known about the receptors involved in host recognition. Toll-like receptors (TLR) are pattern recognition receptors that bind to specific molecules found on pathogens and signal a variety of inflammatory responses. In this study, we show that both Encephalitozoon cuniculi and Encephalitozoon intestinalis are preferentially recognized by TLR2 and not by TLR4 in primary human macrophages. This is the first demonstration of host receptor recognition of any microsporidian species. TLR2 ligation is known to activate NF-κB, resulting in inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8). We found that the infection of primary human macrophages leads to the nuclear translocation of NF-κB in as early as 1 h and the subsequent production of TNF-α and IL-8. To verify the direct role of TLR2 parasite recognition in the production of these cytokines, the receptor was knocked down in primary human macrophages using small interfering RNA. This knockdown resulted in decreases in both the nuclear translocation of NF-κB and the levels of TNF-α and IL-8 after challenge with spores. Taken together, these experiments directly link the initial inflammatory response induced by Encephalitozoon spp. to TLR2 stimulation in human macrophages.

2007 ◽  
Vol 76 (1) ◽  
pp. 214-220 ◽  
Author(s):  
Nobuhiko Kamada ◽  
Kenichi Maeda ◽  
Nagamu Inoue ◽  
Tadakazu Hisamatsu ◽  
Susumu Okamoto ◽  
...  

ABSTRACT Although the probiotic Escherichia coli strain Nissle 1917 has been used for the treatment of inflammatory bowel diseases, the precise mechanisms of action of this strain remain unclear. In the present study, we estimated the anti-inflammatory effect of E. coli Nissle 1917 on inflammatory responses in vitro to determine the suppressive mechanism of Nissle 1917 on the inflammatory process. To determine the effect of E. coli Nissle 1917, the human colonic epithelial cell line HCT15 was incubated with or without E. coli Nissle 1917 or another nonpathogenic E. coli strain, K-12, and then tumor necrosis factor alpha (TNF-α)-induced interleukin-8 (IL-8) production from HCT15 cells was assessed. Enzyme-linked immunosorbent assays and real-time quantitative PCR showed that Nissle 1917 treatment suppressed TNF-α-induced IL-8 transcription and production. In addition, results from luciferase assays indicated that Nissle 1917 inhibited IL-8 promoter activity. On the other hand, these anti-inflammatory effects were not seen with E. coli K-12. In addition, heat-killed Nissle 1917 or its genomic DNA did not have this anti-inflammatory effect. Surprisingly, Nissle 1917 did not affect IL-8 transactivation pathways, such as NF-κB activation, nuclear translocation, and DNA binding, or even activation of other transcriptional factors. Furthermore, it also became evident that Nissle 1917 induced the anti-inflammatory effect without contact to epithelial cells. In conclusion, these data indicate that the nonpathogenic E. coli strain Nissle 1917 expresses a direct anti-inflammatory activity on human epithelial cells via a secreted factor which suppresses TNF-α-induced IL-8 transactivation through mechanisms different from NF-κB inhibition.


2006 ◽  
Vol 80 (16) ◽  
pp. 8248-8258 ◽  
Author(s):  
Vasile Laza-Stanca ◽  
Luminita A. Stanciu ◽  
Simon D. Message ◽  
Michael R. Edwards ◽  
James E. Gern ◽  
...  

ABSTRACT Rhinoviruses (RV) are the major cause of acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Rhinoviruses have been shown to activate macrophages, but rhinovirus replication in macrophages has not been reported. Tumor necrosis factor alpha (TNF-α) is implicated in the pathogenesis of acute exacerbations, but its cellular source and mechanisms of induction by virus infection are unclear. We hypothesized that rhinovirus replication in human macrophages causes activation and nuclear translocation of NF-κB, leading to TNF-α production. Using macrophages derived from the human monocytic cell line THP-1 and from primary human monocytes, we demonstrated that rhinovirus replication was productive in THP-1 macrophages, leading to release of infectious virus into supernatants, but was limited in monocyte-derived macrophages, likely due to type I interferon production, which was robust in monocyte-derived but deficient in THP-1-derived macrophages. Similar to bronchial epithelial cells, only small numbers of cells supported complete virus replication. We demonstrated RV-induced activation of NF-κB and colocalization of p65/NF-κB nuclear translocation with virus replication in both macrophage types. The infection induced TNF-α release in a time- and dose-dependent, RV serotype- and receptor-independent manner and was largely (THP-1 derived) or completely (monocyte derived) dependent upon virus replication. Finally, we established the requirement for NF-κB but not p38 mitogen-activated protein kinase in induction of TNF-α. These data suggest RV infection of macrophages may be an important source of proinflammatory cytokines implicated in the pathogenesis of exacerbations of asthma and COPD. They also confirm inhibition of NF-κB as a promising target for development of new therapeutic intervention strategies.


2013 ◽  
Vol 87 (23) ◽  
pp. 12935-12948 ◽  
Author(s):  
Jie Zhang ◽  
Kezhen Wang ◽  
Shuai Wang ◽  
Chunfu Zheng

NF-κB plays central roles in regulation of diverse biological processes, including innate and adaptive immunity and inflammation. HSV-1 is the archetypal member of the alphaherpesviruses, with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 ICP0 protein, a viral E3 ubiquitin ligase, was shown to significantly suppress tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. ICP0 was demonstrated to bind to the NF-κB subunits p65 and p50 by coimmunoprecipitation analysis. ICP0 bound to the Rel homology domain (RHD) of p65. Fluorescence microscopy demonstrated that ICP0 abolished nuclear translocation of p65 upon TNF-α stimulation. Also, ICP0 degraded p50 via its E3 ubiquitin ligase activity. The RING finger (RF) domain mutant ICP0 (ICP0-RF) lost its ability to inhibit TNF-α-mediated NF-κB activation and p65 nuclear translocation and degrade p50. Notably, the RF domain of ICP0 was sufficient to interact with p50 and abolish NF-κB reporter gene activity. Here, it is for the first time shown that HSV-1 ICP0 interacts with p65 and p50, degrades p50 through the ubiquitin-proteasome pathway, and prevents NF-κB-dependent gene expression, which may contribute to immune evasion and pathogenesis of HSV-1.


2001 ◽  
Vol 69 (8) ◽  
pp. 4823-4830 ◽  
Author(s):  
Véronique Jubier-Maurin ◽  
Rose-Anne Boigegrain ◽  
Axel Cloeckaert ◽  
Antoine Gross ◽  
Maria-Teresa Alvarez-Martinez ◽  
...  

ABSTRACT Brucella spp. can establish themselves and cause disease in humans and animals. The mechanisms by whichBrucella spp. evade the antibacterial defenses of their host, however, remain largely unknown. We have previously reported that live brucellae failed to induce tumor necrosis factor alpha (TNF-α) production upon human macrophage infection. This inhibition is associated with a nonidentified protein that is released into culture medium. Outer membrane proteins (OMPs) of gram-negative bacteria have been shown to modulate macrophage functions, including cytokine production. Thus, we have analyzed the effects of two major OMPs (Omp25 and Omp31) of Brucella suis 1330 (wild-type [WT] B. suis) on TNF-α production. For this purpose, omp25and omp31 null mutants of B. suis(Δomp25 B. suis and Δomp31 B. suis, respectively) were constructed and analyzed for the ability to activate human macrophages to secrete TNF-α. We showed that, in contrast to WTB. suis or Δomp31 B. suis, Δomp25 B. suis induced TNF-α production when phagocytosed by human macrophages. The complementation of Δomp25 B. suis with WT omp25 (Δomp25-omp25 B. suis mutant) significantly reversed this effect: Δomp25-omp25 B. suis-infected macrophages secreted significantly less TNF-α than did macrophages infected with the Δomp25 B. suismutant. Furthermore, pretreatment of WT B. suis with an anti-Omp25 monoclonal antibody directed against an epitope exposed at the surface of the bacteria resulted in substancial TNF-α production during macrophage infection. These observations demonstrated that Omp25 of B. suis is involved in the negative regulation of TNF-α production upon infection of human macrophages.


2010 ◽  
Vol 84 (8) ◽  
pp. 3962-3973 ◽  
Author(s):  
D. G. Diel ◽  
G. Delhon ◽  
S. Luo ◽  
E. F. Flores ◽  
D. L. Rock

ABSTRACT The parapoxvirus orf virus (ORFV) is a pathogen of sheep and goats that has been used as a preventive and therapeutic immunomodulatory agent in several animal species. However, the functions (genes, proteins, and mechanisms of action) evolved by ORFV to modulate and manipulate immune responses are poorly understood. Here, the novel ORFV protein ORFV024 was shown to inhibit activation of the NF-κB signaling pathway, an important modulator of early immune responses against viral infections. Infection of primary ovine cells with an ORFV024 deletion mutant virus resulted in a marked increase in expression of NF-κB-regulated chemokines and other proinflammatory host genes. Expression of ORFV024 in cell cultures significantly decreased lipopolysaccharide (LPS)- and tumor necrosis factor alpha (TNF-α)-induced NF-κB-responsive reporter gene expression. Further, ORFV024 expression decreased TNF-α-induced phosphorylation and nuclear translocation of NF-κB-p65, phosphorylation, and degradation of IκBα, and phosphorylation of IκB kinase (IKK) subunits IKKα and IKKβ, indicating that ORFV024 functions by inhibiting activation of IKKs, the bottleneck for most NF-κB activating stimuli. Although ORFV024 interferes with activation of the NF-κB signaling pathway, its deletion from the OV-IA82 genome had no significant effect on disease severity, progression, and time to resolution in sheep, indicating that ORFV024 is not essential for virus virulence in the natural host. This represents the first description of a NF-κB inhibitor encoded by a parapoxvirus.


2005 ◽  
Vol 73 (2) ◽  
pp. 687-694 ◽  
Author(s):  
Manoj Muthukuru ◽  
Ravi Jotwani ◽  
Christopher W. Cutler

ABSTRACT The oral mucosa is exposed to a high density and diversity of gram-positive and gram-negative bacteria, but very little is known about how immune homeostasis is maintained in this environment, particularly in the inflammatory disease chronic periodontitis (CP). The cells of the innate immune response recognize bacterial structures via the Toll-like receptors (TLR). This activates intracellular signaling and transcription of proteins essential for the induction of an adaptive immune response; however, if unregulated, it can lead to destructive inflammatory responses. Using single-immunoenzyme labeling, we show that the human oral mucosa (gingiva) is infiltrated by large numbers of TLR2+ and TLR4+ cells and that their numbers increase significantly in CP, relative to health (P < 0.05, Student's t test). We also show that the numbers of TLR2+ but not TLR4+ cells increase linearly with inflammation (r 2 = 0.33, P < 0.05). Double-immunofluorescence analysis confirms that TLR2 is coexpressed by monocytes (MC)/macrophages (mφ) in situ. Further analysis of gingival tissues by quantitative real-time PCR, however, indicates that despite a threefold increase in the expression of interleukin-1β (IL-1β) mRNA during CP, there is significant (30-fold) downregulation of TLR2 mRNA (P < 0.05, Student's t test). Also showing similar trends are the levels of TLR4 (ninefold reduction), TLR5 (twofold reduction), and MD-2 (sevenfold reduction) mRNA in CP patients compared to healthy persons, while the level of CD14 was unchanged. In vitro studies with human MC indicate that MC respond to an initial stimulus of lipopolysaccharide (LPS) from Porphyromonas gingivalis (PgLPS) or Escherichia coli (EcLPS) by upregulation of TLR2 and TLR4 mRNA and protein; moreover, IL-1β mRNA is induced and tumor necrosis factor alpha (TNF-α), IL-10, IL-6, and IL-8 proteins are secreted. However, restimulation of MC with either PgLPS or EcLPS downregulates TLR2 and TLR4 mRNA and protein and IL-1β mRNA and induces a ca. 10-fold reduction in TNF-α secretion, suggesting the induction of endotoxin tolerance by either LPS. Less susceptible to tolerance than TNF-α were IL-6, IL-10, and IL-8. These studies suggest that certain components of the innate oral mucosal immune response, most notably TLRs and inflammatory cytokines, may become tolerized during sustained exposure to bacterial structures such as LPS and that this may be one mechanism used in the oral mucosa to attempt to regulate local immune responses.


2021 ◽  
Author(s):  
Kim Chiok ◽  
Kevin Hutchison ◽  
Lindsay Grace Miller ◽  
Santanu Bose ◽  
Tanya A Miura

Critically ill COVID-19 patients infected with SARS-CoV-2 display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We used SARS-CoV-2 infected and glycosylated soluble SARS-CoV-2 Spike S1 subunit (S1) treated THP-1 human-derived macrophage-like cell line to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication, virus infection resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that S1 is a key viral component inducing inflammatory response in macrophages, independently of virus replication. Thus, virus-infected or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.


2020 ◽  
Author(s):  
XiaoMei Huang ◽  
ZeXun Mo ◽  
YuJun Li ◽  
Hua He ◽  
KangWei Wang ◽  
...  

Abstract Background Nuclear factor kappa-B (NF-κB) activation increased the expression of cytokines and further lead to lung injury was considered the main mechanism of acute lung injury (ALI). Here, we focus on exploring the potential regulatory mechanism between long noncoding RNA (LncRNA) HOX transcript antisense RNA (HOTAIR) and NF-κB on LPS-induced ALI. Methods A549 cells were then divided into 4 groups: HOTAIR group, NC group, si-HOTAIR group and si-NC group. These 4 groups were then treated with 1μg/mL lipopolysaccharides (LPS) or without LPS at 37°C for 24 h. The expression level of cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) and LncRNA HOTAIR were evaluated by quantitative Real Time Polymerase Chain Reaction (qRT-PCR) and Enzyme-linked immunosorbent assay (ELISA). Western Blot analysis was adopted for evaluating the level of p-IκBα/IκBα and p-p65/p65. Nuclear translocation of p65 was observed by immunofluorescence staining. Results qRT-PCR and ELISA assay showed that the expression of cytokines (IL-1β, IL-6 and TNF-α) and inflammatory gene HOTAIR was remarkably increased with LPS treatment (p < 0.01). Over-expression of HOTAIR significantly increased the expression of cytokines (including IL-1β, IL-6 and TNF-α) and NF-κB pathway associated proteins (including p-IκBα/IκBα and p-p65/p65), while knockdown of HOTAIR had the opposite effect (p < 0.01). The immunofluorescence assay showed that the level of p65 in the nucleus was significantly higher in the HOTAIR group and significantly lowers in the si-HOTAIR group (p < 0.01). Conclusion HOTAIR may play a pro-inflammatory response through NF-κB pathway in LPS-induced ALI, which may provide a perspective for further understanding the pathogenic mechanism of ALI.


2007 ◽  
Vol 76 (1) ◽  
pp. 270-277 ◽  
Author(s):  
Takashi Shimizu ◽  
Yutaka Kida ◽  
Koichi Kuwano

ABSTRACT The pathogenesis of Mycoplasma pneumoniae infection is considered to be in part attributable to excessive immune responses. In this study, we investigated whether synthetic lipopeptides of subunit b of F0F1-type ATPase (F0F1-ATPase), NF-κB-activating lipoprotein 1 (N-ALP1), and N-ALP2 (named FAM20, sN-ALP1, and sN-ALP2, respectively) derived from M. pneumoniae induce cytokine and chemokine production and leukocyte infiltration in vivo. Intranasal administration of FAM20 and sN-ALP2 induced infiltration of leukocyte cells and production of chemokines and cytokines in bronchoalveolar lavage fluid, but sN-ALP1 failed to do so. The activity of FAM20 was notably higher than that of sN-ALP2. FAM20 and sN-ALP2 induced tumor necrosis factor alpha (TNF-α) through Toll-like receptor 2 in mouse peritoneal macrophages. Moreover, in the range of low concentrations of lipopeptides, FAM20 showed relatively high activity of inducing TNF-α in mouse peritoneal macrophages compared to synthetic lipopeptides such as MALP-2 and FSL-1, derived from Mycoplasma fermentans and Mycoplasma salivarium, respectively. These findings indicate that the F0F1-ATPase might be a key molecule in inducing cytokines and chemokines contributing to inflammatory responses during M. pneumoniae infection in vivo.


2019 ◽  
Vol 65 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Hong Xiao Cui ◽  
Xiu Rong Xu

Rabbit is susceptible to intestinal infection, which often results in severe inflammatory response. To investigate whether the special community structure of rabbit intestinal bacteria contributes to this susceptibility, we compared the inflammatory responses of isolated rabbit crypt and villus to heat-treated total bacteria in pig, chicken, and rabbit ileal contents. The dominant phylum in pig and chicken ileum was Firmicutes, while Bacteroidetes was dominant in rabbit ileum. The intestinal bacteria from rabbit induced higher expression of toll-like receptor 4 (TLR4) in rabbit crypt and villus (P < 0.05). TLR2 and TLR3 expression was obviously stimulated by chicken and pig intestinal bacteria (P < 0.05) but not by those of rabbit. The ileal bacteria from those three animals all increased the expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in crypts and villus (P < 0.05). Chicken and pig ileal bacteria also stimulated the expression of anti-inflammatory factors interferon beta (IFN-β) and IL-10 (P < 0.05), while those of rabbit did not (P > 0.05). In conclusion, a higher abundance of Gram-negative bacteria in rabbit ileum did not lead to more expressive pro-inflammatory cytokines in isolated rabbit crypt and villus, but a higher percentage of Lactobacillus in chicken ileum might result in more expressive anti-inflammatory factors.


Sign in / Sign up

Export Citation Format

Share Document