scholarly journals A Monoclonal Immunoglobulin G Antibody Directed against an Immunodominant Linear Epitope on the Ricin A Chain Confers Systemic and Mucosal Immunity to Ricin

2009 ◽  
Vol 78 (1) ◽  
pp. 552-561 ◽  
Author(s):  
Lori M. Neal ◽  
Joanne O'Hara ◽  
Robert N. Brey ◽  
Nicholas J. Mantis

ABSTRACT Due to the potential use of ricin and other fast-acting toxins as agents of bioterrorism, there is an urgent need for the development of safe and effective antitoxin vaccines. A candidate ricin subunit vaccine (RiVax) consisting of a recombinant attenuated enzymatic A chain (RTA) has been shown to elicit protective antitoxin antibodies in mice and rabbits and is currently being tested in phase I human clinical trials. However, evaluation of the efficacy of this vaccine for humans is difficult for a number of reasons, including the fact that the key neutralizing B-cell epitopes on RTA have not been fully defined. Castelletti and colleagues (Clin. Exp. Immunol. 136:365-372, 2004) recently identified a linear epitope on RTA, spanning residues L161 to I175, as a primary target of serum antibodies derived from humans who had been treated with ricin immunotoxin. While affinity-purified polyclonal IgG antibodies against this region of RTA were capable of neutralizing ricin in vitro, their capacity to confer protection against ricin challenge in vivo was not determined. In this report, we describe the production and characterization of GD12, a murine monoclonal IgG1 antibody specifically directed against residues 163 to 174 (TLARSFIICIQM) of RTA. GD12 bound ricin holotoxin with high affinity (KD [dissociation constant], 2.9 × 10−9 M) and neutralized it with a 50% inhibitory concentration of ∼0.25 μg/ml, as determined by a Vero cell-based cytotoxicity assay. Passive administration of GD12 was sufficient to protect BALB/c mice against intraperitoneal and intragastric ricin challenges. These data are important in terms of vaccine development, since they firmly establish that preexisting serum antibodies directed against residues 161 to 175 on RTA are sufficient to confer both systemic and mucosal immunity to ricin. The potential of GD12 to serve as a therapeutic following ricin challenge was not explored in this study.

2021 ◽  
Vol 10 (1) ◽  
pp. 145
Author(s):  
Fantahun Biadglegne ◽  
Brigitte König ◽  
Arne C. Rodloff ◽  
Anca Dorhoi ◽  
Ulrich Sack

Tuberculosis (TB) remains a major health issue worldwide. In order to contain TB infections, improved vaccines as well as accurate and reliable diagnostic tools are desirable. Exosomes are employed for the diagnosis of various diseases. At present, research on exosomes in TB is still at the preliminary stage. Recent studies have described isolation and characterization of Mycobacterium tuberculosis (Mtb) derived exosomes in vivo and in vitro. Mtb-derived exosomes (Mtbexo) may be critical for TB pathogenesis by delivering mycobacterial-derived components to the recipient cells. Proteomic and transcriptomic analysis of Mtbexo have revealed a variety of proteins and miRNA, which are utilized by the TB bacteria for pathogenesis. Exosomes have been isolated in body fluids, are amenable for fast detection, and could contribute as diagnostic or prognostic biomarker to disease control. Extraction of exosomes from biological fluids is essential for the exosome research and requires careful standardization for TB. In this review, we summarized the different studies on Mtbexo molecules, including protein and miRNA and the methods used to detect exosomes in biological fluids and cell culture supernatants. Thus, the detection of Mtbexo molecules in biological fluids may have a potential to expedite the diagnosis of TB infection. Moreover, the analysis of Mtbexo may generate new aspects in vaccine development.


2005 ◽  
Vol 6 (2) ◽  
pp. 173-197 ◽  
Author(s):  
Jeremy J. Kroll ◽  
Michael B. Roof ◽  
Lorraine J. Hoffman ◽  
James S. Dickson ◽  
D. L. Hank Harris

AbstractProliferative enteropathy (PE; ileitis) is a common intestinal disease affecting susceptible pigs raised under various management systems around the world. Major developments in the understanding of PE and its causative agent,Lawsonia intracellularis, have occurred that have led to advances in the detection of this disease and methods to control and prevent it. Diagnostic tools that have improved overall detection and early onset of PE in pigs include various serological and molecular-based assays. Histological tests such as immunohistochemistry continue to be the gold standard in confirmingLawsonia-specific lesions in pigspost mortem. Despite extreme difficulties in isolatingL. intracellularis, innovations in the cultivation and the development of pure culture challenge models, have opened doors to better characterization of the pathogenesis of PE throughin vivoandin vitro L. intracellularis–host interactions. Advancements in molecular research such as the genetic sequencing of the entireLawsoniagenome have provided ways to identify various immunogens, metabolic pathways and methods for understanding the epidemiology of this organism. The determinations of immunological responsiveness in pigs to virulent and attenuated isolates ofL. intracellularisand identification of various immunogens have led to progress in vaccine development.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Carbon ◽  
2016 ◽  
Vol 103 ◽  
pp. 291-298 ◽  
Author(s):  
Valeria Ettorre ◽  
Patrizia De Marco ◽  
Susi Zara ◽  
Vittoria Perrotti ◽  
Antonio Scarano ◽  
...  

Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1954136
Author(s):  
Sujatha Kumar ◽  
Srimoyee Ghosh ◽  
Geeta Sharma ◽  
Zebin Wang ◽  
Marilyn R. Kehry ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


Sign in / Sign up

Export Citation Format

Share Document