scholarly journals Natural Competence Promotes Helicobacter pylori Chronic Infection

2012 ◽  
Vol 81 (1) ◽  
pp. 209-215 ◽  
Author(s):  
Marion S. Dorer ◽  
Ilana E. Cohen ◽  
Tate H. Sessler ◽  
Jutta Fero ◽  
Nina R. Salama

Animal models are important tools for studies of human disease, but developing these models is a particular challenge with regard to organisms with restricted host ranges, such as the human stomach pathogenHelicobacter pylori. In most cases,H. pyloriinfects the stomach for many decades before symptoms appear, distinguishing it from many bacterial pathogens that cause acute infection. To model chronic infection in the mouse, a human clinical isolate was selected for its ability to survive for 2 months in the mouse stomach, and the resulting strain, MSD132, colonized the mouse stomach for at least 28 weeks. During selection, thecagYcomponent of the Cag type IV secretion system was mutated, disrupting a key interaction with host cells. Increases in both bacterial persistence and bacterial burden occurred prior to this mutation, and a mixed population ofcagY+andcagYmutant cells was isolated from a single mouse, suggesting that mutations accumulate during selection and that factors in addition to the Cag apparatus are important for murine adaptation. Diversity in both alleles and genes is common inH. pyloristrains, and natural competence mediates a high rate of interstrain genetic exchange. Mutations of the Com apparatus, a membrane DNA transporter, and DprA, a cytosolic competence factor, resulted in reduced persistence, although initial colonization was normal. Thus, exchange of DNA between genetically heterogeneousH. pyloristrains may improve chronic colonization. The strains and methods described here will be important tools for defining both the spectrum of mutations that promote murine adaptation and the genetic program of chronic infection.

2016 ◽  
Vol 85 (1) ◽  
Author(s):  
William E. Sause ◽  
Daniela Keilberg ◽  
Soufiane Aboulhouda ◽  
Karen M. Ottemann

ABSTRACT The human pathogen Helicobacter pylori uses the host receptor α5β1 integrin to trigger inflammation in host cells via its cag pathogenicity island (cag PAI) type IV secretion system (T4SS). Here, we report that the H. pylori ImaA protein (HP0289) decreases the action of the cag PAI T4SS via tempering the bacterium's interaction with α5β1 integrin. Previously, imaA-null mutants were found to induce an elevated inflammatory response that was dependent on the cag PAI T4SS; here we extend those findings to show that the elevated response is independent of the CagA effector protein. To understand how ImaA could be affecting cag PAI T4SS activity at the host cell interface, we utilized the Phyre structural threading program and found that ImaA has a region with remote homology to bacterial integrin-binding proteins. This region was required for ImaA function. Unexpectedly, we observed that imaA mutants bound higher levels of α5β1 integrin than wild-type H. pylori, an outcome that required the predicted integrin-binding homology region of ImaA. Lastly, we report that ImaA directly affected the amount of host cell β1 integrin but not other cellular integrins. Our results thus suggest a model in which H. pylori employs ImaA to regulate interactions between integrin and the T4SS and thus alter the host inflammatory strength.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Sandra Nell ◽  
Lynn Kennemann ◽  
Sandra Schwarz ◽  
Christine Josenhans ◽  
Sebastian Suerbaum

ABSTRACTHelicobacter pyloriundergoes rapid microevolution during chronic infection, but very little is known about how this affects host interaction factors. The best-studied adhesin ofH. pyloriis BabA, which mediates binding to the blood group antigen Lewis b [Le(b)]. To study the dynamics of Le(b) adherence during human infection, we analyzed pairedH. pyloriisolates obtained sequentially from chronically infected individuals. A complete loss or significant reduction of Le(b) binding was observed in strains from 5 out of 23 individuals, indicating that the Le(b) binding phenotype is quite stable during chronic human infection. Sequence comparisons ofbabAidentified differences due to mutation and/or recombination in 12 out of 16 strain pairs analyzed. Most amino acid changes were found in the putative N-terminal extracellular adhesion domain. One strain pair that had changed from a Le(b) binding to a nonbinding phenotype was used to study the role of distinct sequence changes in Le(b) binding. By transformations of the nonbinding strain with ababAgene amplified from the binding strain,H. pyloristrains with mosaicbabAgenes were generated. Recombinants were enriched for a gain of Le(b) binding by biopanning or for BabA expression on the bacterial surface by pulldown assay. With this approach, we identified several amino acid residues affecting the strength of Le(b) binding. Additionally, the data showed that the C terminus of BabA, which is predicted to encode an outer membrane β-barrel domain, plays an essential role in the biogenesis of this protein.IMPORTANCEHelicobacter pyloricauses a chronic infection of the human stomach that can lead to ulcers and cancer. The bacterium can bind to gastric epithelial cells with specialized outer membrane proteins. The best-studied protein is the BabA adhesin which binds to the Lewis b blood group antigen. SinceH. pyloriis a bacterium with very high genetic variability, we asked whetherbabAevolves during chronic infection and how mutations or recombination inbabAaffect binding. We found that BabA-mediated adherence was stable in most individuals but observed a complete loss of binding or reduced binding in 22% of individuals. One strain pair in which binding was lost was used to generatebabAsequences that were mosaics of a functional allele and a nonfunctional allele, and the mosaic sequences were used to identify amino acids critically involved in binding of BabA to Lewis b.


2016 ◽  
Vol 198 (11) ◽  
pp. 1563-1575 ◽  
Author(s):  
Kieran D. Collins ◽  
Tessa M. Andermann ◽  
Jenny Draper ◽  
Lisa Sanders ◽  
Susan M. Williams ◽  
...  

ABSTRACTCytoplasmic chemoreceptors are widespread among prokaryotes but are far less understood than transmembrane chemoreceptors, despite being implicated in many processes. One such cytoplasmic chemoreceptor isHelicobacter pyloriTlpD, which is required for stomach colonization and drives a chemotaxis response to cellular energy levels. Neither the signals sensed by TlpD nor its molecular mechanisms of action are known. We report here that TlpD functions independently of the other chemoreceptors. When TlpD is the sole chemoreceptor, it is able to localize to the pole and recruits CheW, CheA, and at least two CheV proteins to this location. It loses the normal membrane association that appears to be driven by interactions with other chemoreceptors and with CheW, CheV1, and CheA. These results suggest that TlpD can form an autonomous signaling unit. We further determined that TlpD mediates a repellent chemotaxis response to conditions that promote oxidative stress, including being in the presence of iron, hydrogen peroxide, paraquat, and metronidazole. Last, we found that all testedH. pyloristrains express TlpD, whereas other chemoreceptors were present to various degrees. Our data suggest a model in which TlpD coordinates a signaling complex that responds to oxidative stress and may allowH. pylorito avoid areas of the stomach with high concentrations of reactive oxygen species.IMPORTANCEHelicobacter pylorisenses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellum-based motility in a process called chemotaxis. Chemotaxis is employed during infection and presumably aidsH. pyloriin encountering and colonizing preferred niches. A cytoplasmic chemoreceptor named TlpD is particularly important in this process, and we report here that this chemoreceptor is able to operate independently of other chemoreceptors to organize a chemotaxis signaling complex and mediate a repellent response to oxidative stress conditions.H. pyloriencounters and must cope with oxidative stress during infection due to oxygen and reactive oxygen species produced by host cells. TlpD's repellent response may allow the bacteria to escape niches experiencing inflammation and elevated reactive oxygen species (ROS) production.


2013 ◽  
Vol 79 (23) ◽  
pp. 7351-7359 ◽  
Author(s):  
Aleksandra W. Debowski ◽  
Phebe Verbrugghe ◽  
Miriam Sehnal ◽  
Barry James Marshall ◽  
Mohammed Benghezal

ABSTRACTDeletion mutants and animal models have been instrumental in the study ofHelicobacter pyloripathogenesis. Conditional mutants, however, would enable the study of the temporal gene requirement duringH. pyloricolonization and chronic infection. To achieve this goal, we adapted theEscherichia coliTn10-derived tetracycline-inducible expression system for use inH. pylori. TheureApromoter was modified by inserting one or twotetoperators to generate tetracycline-responsive promoters, nameduPtetO, and these promoters were then fused to the reportergfpmut2 and inserted into different loci. The expression of the tetracycline repressor (tetR) was placed under the control of one of three promoters and inserted into the chromosome. Conditional expression of green fluorescent protein (GFP) in strains harboringtetRanduPtetO-GFPwas characterized by measuring GFP activity and by immunoblotting. The twotet-responsiveuPtetOpromoters differ in strength, and induction of these promoters was inducer concentration and time dependent, with maximum expression achieved after induction for 8 to 16 h. Furthermore, the chromosomal location of theuPtetO-GFPconstruct and the nature of the promoter driving expression oftetRinfluenced the strength of theuPtetOpromoters upon induction. Integration ofuPtetO-GFPandtetRconstructs at different genomic loci was stablein vivoand did not affect colonization. Finally, we demonstrate tetracycline-dependent induction of GFP expressionin vivoduring chronic infection. These results open new experimental avenues for dissectingH. pyloripathogenesis using animal models and for testing the roles of specific genes in colonization of, adaptation to, and persistence in the host.


1999 ◽  
Vol 67 (6) ◽  
pp. 3112-3120 ◽  
Author(s):  
Giacomo Rossi ◽  
Michela Rossi ◽  
Claudia G. Vitali ◽  
Damiano Fortuna ◽  
Daniela Burroni ◽  
...  

ABSTRACT Helicobacter pylori has been widely recognized as an important human pathogen responsible for chronic gastritis, peptic ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Little is known about the natural history of this infection since patients are usually recognized as having the infection only after years or decades of chronic disease. Several animal models ofH. pylori infection, including those with different species of rodents, nonhuman primates, and germ-free animals, have been developed. Here we describe a new animal model in which the clinical, pathological, microbiological, and immunological aspects of human acute and chronic infection are mimicked and which allows us to monitor these aspects of infection within the same individuals. Conventional Beagle dogs were infected orally with a mouse-adapted strain of H. pylori and monitored for up to 24 weeks. Acute infection caused vomiting and diarrhea. The acute phase was followed by polymorphonuclear cell infiltration, interleukin 8 induction, mononuclear cell recruitment, and the appearance of a specific antibody response against H. pylori. The chronic phase was characterized by gastritis, epithelial alterations, superficial erosions, and the appearance of the typical macroscopic follicles that in humans are considered possible precursors of MALT lymphoma. In conclusion, infection in this model mimics closely human infection and allows us to study those phases that cannot be studied in humans. This new model can be a unique tool for learning more about the disease and for developing strategies for treatment and prevention.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1163 ◽  
Author(s):  
Pachathundikandi ◽  
Gutiérrez-Escobar ◽  
Tegtmeyer

The gastric pathogen and carcinogen Helicobacter pylori (H. pylori) encodes a type IV secretion system for translocation of the effector protein CagA into host cells. Injected CagA becomes tyrosine-phosphorylated at the five amino acid residue Glutamate-Proline- Isoleucine-Tyrosine-Alanine (EPIYA)-sequence motifs. These phosphorylated EPIYA-sites represent recognition motifs for binding of multiple host factors, which then manipulate signaling pathways to trigger gastric disease. Thus, efficient detection of single phosphorylated EPIYA-motifs in CagA is required. Detection of phospho-CagA is primarily performed using commercial pan-phosphotyrosine antibodies. However, those antibodies were originally generated to recognize many phosphotyrosines in various mammalian proteins and are not optimized for use in bacteria. To address this important limitation, we synthesized 11-mer phospho- and non-phospho-peptides from EPIYA-motifs A, B, and C, and produced three phospho-specific and three non-phospho-specific rabbit polyclonal CagA antibodies. These antibodies specifically recognized the corresponding phosphorylated and non-phosphorylated EPIYA-motifs, while the EPIYA-C antibodies also recognized the related East-Asian EPIYA-D motif. Otherwise, no cross-reactivity of the antibodies among EPIYAs was observed. Western blotting demonstrated that each EPIYA-motif can be predominantly phosphorylated during H. pylori infection. This represents the first complete set of phospho-specific antibodies for an effector protein in bacteria, providing useful tools to gather information for the categorization of CagA phosphorylation, cancer signaling, and gastric disease progression.


2019 ◽  
Vol 87 (7) ◽  
Author(s):  
Laura E. Martínez ◽  
Valerie P. O’Brien ◽  
Christina K. Leverich ◽  
Sue E. Knoblaugh ◽  
Nina R. Salama

ABSTRACTHalf of all humans harborHelicobacter pyloriin their stomachs. Helical cell shape is thought to facilitateH. pylori’s ability to bore into the protective mucus layer in a corkscrew-like motion, thereby enhancing colonization of the stomach.H. pyloricell shape mutants show impaired colonization of the mouse stomach, highlighting the importance of cell shape in infection. To gain a deeper understanding of how helical cell morphology promotes host colonization byH. pylori, we used three-dimensional confocal microscopy to visualize the clinical isolate PMSS1 and an isogenic straight-rod mutant (Δcsd6) within thick longitudinal mouse stomach sections. We also performed volumetric image analysis to quantify the number of bacteria residing within corpus and antral glands in addition to measuring total CFU. We found that straight rods show attenuation during acute colonization of the stomach (1 day or 1 week postinfection) as measured by total CFU. Our quantitative imaging revealed that wild-type bacteria extensively colonized antral glands at 1 week postinfection, whilecsd6mutants showed variable colonization of the antrum at this time point. During chronic infection (1 or 3 months postinfection), total CFU were highly variable but similar for wild-type and straight rods. Both wild-type and straight rods persisted and expanded in corpus glands during chronic infection. However, the straight rods showed reduced inflammation and disease progression. Thus, helical cell shape contributes to tissue interactions that promote inflammation during chronic infection, in addition to facilitating niche acquisition during acute infection.


2019 ◽  
Vol 88 (2) ◽  
Author(s):  
Aung Soe Lin ◽  
Samuel D. R. Dooyema ◽  
Arwen E. Frick-Cheng ◽  
M. Lorena Harvey ◽  
Giovanni Suarez ◽  
...  

ABSTRACT Helicobacter pylori colonizes the stomach in about half of the world’s population. H. pylori strains containing the cag pathogenicity island (cag PAI) are associated with a higher risk of gastric adenocarcinoma or peptic ulcer disease than cag PAI-negative strains. The cag PAI encodes a type IV secretion system (T4SS) that mediates delivery of the CagA effector protein as well as nonprotein bacterial constituents into gastric epithelial cells. H. pylori-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and interleukin-8 (IL-8) secretion are attributed to T4SS-dependent delivery of lipopolysaccharide metabolites and peptidoglycan into host cells, and Toll-like receptor 9 (TLR9) activation is attributed to delivery of bacterial DNA. In this study, we analyzed the bacterial energetic requirements associated with these cellular alterations. Mutant strains lacking Cagα, Cagβ, or CagE (putative ATPases corresponding to VirB11, VirD4, and VirB4 in prototypical T4SSs) were capable of T4SS core complex assembly but defective in CagA translocation into host cells. Thus, the three Cag ATPases are not functionally redundant. Cagα and CagE were required for H. pylori-induced NF-κB activation, IL-8 secretion, and TLR9 activation, but Cagβ was dispensable for these responses. We identified putative ATP-binding motifs (Walker-A and Walker-B) in each of the ATPases and generated mutant strains in which these motifs were altered. Each of the Walker box mutant strains exhibited properties identical to those of the corresponding deletion mutant strains. These data suggest that Cag T4SS-dependent delivery of nonprotein bacterial constituents into host cells occurs through mechanisms different from those used for recruitment and delivery of CagA into host cells.


2014 ◽  
Vol 82 (7) ◽  
pp. 2881-2889 ◽  
Author(s):  
Pascale Mustapha ◽  
Isabelle Paris ◽  
Magali Garcia ◽  
Cong Tri Tran ◽  
Julie Cremniter ◽  
...  

ABSTRACTHelicobacter pyloriinfection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. Thecagpathogenicity island (cagPAI) ofH. pyloriallows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response toH. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells withH. pyloriB128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models withH. pyloriB128ΔcagM, acagPAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells withH. pylori, inflammatory-mediator production was largely due tocagPAI substrate-independent virulence factors. Thus,H. pyloricagPAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation duringH. pyloriinfection.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Annelie Olofsson ◽  
Lars Nygård Skalman ◽  
Ikenna Obi ◽  
Richard Lundmark ◽  
Anna Arnqvist

ABSTRACTBacteria shed a diverse set of outer membrane vesicles that function as transport vehicles to deliver effector molecules and virulence factors to host cells.Helicobacter pyloriis a gastric pathogen that infects half of the world’s population, and in some individuals the infection progresses into peptic ulcer disease or gastric cancer. Here we report that intact vesicles fromH. pyloriare internalized by clathrin-dependent endocytosis and further dynamin-dependent processes, as well as in a cholesterol-sensitive manner. We analyzed the uptake ofH. pylorivesicles by gastric epithelial cells using a method that we refer to as quantification of internalized substances (qIS). The qIS assay is based on a near-infrared dye with a cleavable linker that enables the specific quantification of internalized substances after exposure to reducing conditions. Both chemical inhibition and RNA interference in combination with the qIS assay showed thatH. pylorivesicles enter gastric epithelial cells via both clathrin-mediated endocytosis and additional endocytic processes that are dependent on dynamin. Confocal microscopy revealed thatH. pylorivesicles colocalized with clathrin and dynamin II and with markers of subsequent endosomal and lysosomal trafficking. Interestingly, however, knockdown of components required for caveolae had no significant effect on internalization and knockdown of components required for clathrin-independent carrier (CLIC) endocytosis increased internalization ofH. pylorivesicles. Furthermore, uptake of vesicles by both clathrin-dependent and -independent pathways was sensitive to depletion, but not sequestering, of cholesterol in the host cell membrane suggesting that membrane fluidity influences the efficiency ofH. pylorivesicle uptake.IMPORTANCEBacterial vesicles act as long-distance tools to deliver toxins and effector molecules to host cells. Vesicles can cause a variety of host cell responses via cell surface-induced cell signaling or internalization. Vesicles of diverse bacterial species enter host cells via different endocytic pathways or via membrane fusion. With the combination of a fluorescence-based quantification assay that quantifies internalized vesicles in a large number of cells and either chemical inhibition or RNA interference, we show that clathrin-mediated endocytosis is the major pathway for uptake ofHelicobacter pylorivesicles and that lipid microdomains of the host cell membrane affect uptake of vesicles via clathrin-independent pathways. Our results provide important insights about membrane fluidity and its important role in the complex process that directs theH. pylorivesicle to a specific endocytic pathway. Understanding the mechanisms that operate in vesicle-host interactions is important to fully recognize the impact of vesicles in pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document