scholarly journals Magnesium Uptake by CorA Is Essential for Viability of the Gastric Pathogen Helicobacter pylori

2002 ◽  
Vol 70 (7) ◽  
pp. 3930-3934 ◽  
Author(s):  
Jens Pfeiffer ◽  
Johannes Guhl ◽  
Barbara Waidner ◽  
Manfred Kist ◽  
Stefan Bereswill

ABSTRACT We show here that Mg2+ acquisition by CorA is essential for Helicobacter pylori in vitro, as corA mutants did not grow in media without Mg2+ supplementation. Complementation analysis performed with an Escherichia coli corA mutant revealed that H. pylori CorA transports nickel and cobalt in addition to Mg2+. However, Mg2+ is the dominant CorA substrate, as the corA mutation affected neither cobalt and nickel resistance nor nickel induction of urease in H. pylori. The drastic Mg2+ requirement (20 mM) of H. pylori corA mutants indicates that CorA plays a key role in the adaptation to the low-Mg2+ conditions predominant in the gastric environment.

2005 ◽  
Vol 389 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Rajesh K. Soni ◽  
Parul Mehra ◽  
Gauranga Mukhopadhyay ◽  
Suman Kumar Dhar

In Escherichia coli, DnaC is essential for loading DnaB helicase at oriC (the origin of chromosomal DNA replication). The question arises as to whether this model can be generalized to other species, since many eubacterial species fail to possess dnaC in their genomes. Previously, we have reported the characterization of HpDnaB (Helicobacter pylori DnaB) both in vitro and in vivo. Interestingly, H. pylori does not have a DnaC homologue. Using two different E. coli dnaC (EcdnaC) temperature-sensitive mutant strains, we report here the complementation of EcDnaC function by HpDnaB in vivo. These observations strongly suggest that HpDnaB can bypass EcDnaC activity in vivo.


mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Emily Goers Sweeney ◽  
Karen Guillemin

ABSTRACTFor almost 50 years,Escherichia colihas been the model for understanding how bacteria orient their movement in response to chemical cues, but recent studies of chemotaxis in other bacteria have revealed interesting variations from prevailing paradigms. Investigating the human pathogenHelicobacter pylori, Amieva and colleagues [mBio 2(4):e00098-11, 2011] discovered a new chemotaxis regulator, ChePep, which modulates swimming behavior through the canonical histidine-aspartate phosphorelay system. Functionally conserved among the epsilonproteobacteria, ChePep is essential forH. pylorito navigate deep into the stomach’s gastric glands and may be an attractive target for novel antibiotics.


Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 2017-2023 ◽  
Author(s):  
Lei Dong ◽  
Ni Cheng ◽  
Ming-Wei Wang ◽  
Junfeng Zhang ◽  
Chang Shu ◽  
...  

This study describes the cloning, genetic analysis and biochemical characterization of a leucyl aminopeptidase (LAP) from Helicobacter pylori. A gene encoding LAP was cloned from H. pylori and the expressed 55 kDa protein displayed homology to aminopeptidases from Gram-negative bacteria, plants and mammals. This LAP demonstrated amidolytic activity against l-leucine-p-nitroanilide. Optimal activity was observed at pH 8·0 and 45 °C, with V max of 232 μmol min−1 (mg protein)−1 and S 0·5 of 0·65 mM. The data suggest that LAP could be allosteric (n H=2·27), with regulatory homohexamers, and its activity was inhibited by ion chelators and enhanced by divalent manganese, cobalt and nickel cations. Bestatin inhibited both LAP activity (IC50=49·9 nM) and H. pylori growth in vitro. The results point to the potential use of LAP as a drug target to develop novel anti-H. pylori agents.


Author(s):  
A. R. Crooker ◽  
W. G. Kraft ◽  
T. L. Beard ◽  
M. C. Myers

Helicobacter pylori is a microaerophilic, gram-negative bacterium found in the upper gastrointestinal tract of humans. There is strong evidence that H. pylori is important in the etiology of gastritis; the bacterium may also be a major predisposing cause of peptic ulceration. On the gastric mucosa, the organism exists as a spiral form with one to seven sheathed flagella at one (usually) or both poles. Short spirals were seen in the first successful culture of the organism in 1983. In 1984, Marshall and Warren reported a coccoid form in older cultures. Since that time, other workers have observed rod and coccal forms in vitro; coccoid forms predominate in cultures 3-7 days old. We sought to examine the growth cycle of H. pylori in prolonged culture and the mode of coccoid body formation.


2019 ◽  
Vol 19 (5) ◽  
pp. 376-382 ◽  
Author(s):  
Sachin Jangra ◽  
Gayathri Purushothaman ◽  
Kapil Juvale ◽  
Srimadhavi Ravi ◽  
Aishwarya Menon ◽  
...  

Background & Objective:Helicobacter pylori infection is one of the primary causes of peptic ulcer followed by gastric cancer in the world population. Due to increased occurrences of multi-drug resistance to the currently available antibiotics, there is an urgent need for a new class of drugs against H. pylori. Inosine 5′-monophosphate dehydrogenase (IMPDH), a metabolic enzyme plays a significant role in cell proliferation and cell growth. It catalyses guanine nucleotide synthesis. IMPDH enzyme has been exploited as a target for antiviral, anticancer and immunosuppressive drugs. Recently, bacterial IMPDH has been studied as a potential target for treating bacterial infections. Differences in the structural and kinetic parameters of the eukaryotic and prokaryotic IMPDH make it possible to target bacterial enzyme selectively.Methods:In the current work, we have synthesised and studied the effect of substituted 3-aryldiazenyl indoles on Helicobacter pylori IMPDH (HpIMPDH) activity. The synthesised molecules were examined for their inhibitory potential against recombinant HpIMPDH.Results:In this study, compounds 1 and 2 were found to be the most potent inhibitors amongst the database with IC50 of 0.8 ± 0.02µM and 1 ± 0.03 µM, respectively.Conclusion:When compared to the most potent known HpIMPDH inhibitor molecule C91, 1 was only four-fold less potent and can be a good lead for further development of selective and potent inhibitors of HpIMPDH.


2019 ◽  
Vol 16 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Göknil Pelin Coşkun ◽  
Teodora Djikic ◽  
Sadık Kalaycı ◽  
Kemal Yelekçi ◽  
Fikrettin Şahin ◽  
...  

Background:The main factor for the prolongation of the ulcer treatment in the gastrointestinal system would be Helicobacter pylori infection, which can possibly lead to gastrointestinal cancer. Triple therapy is the treatment of choice by today's standards. However, observed resistance among the bacterial strains can make the situation even worse. Therefore, there is a need to discover new targeted antibacterial therapy in order to make success in the eradication of H. pylori infections.Methods:The targeted therapy rule is to identify the related macromolecules that are responsible for the survival of the bacteria. Thus, 2-[(2',4'-difluoro-4-hydroxybiphenyl-3-yl)carbonyl]-N- (substituted)hydrazinocarbothioamide (3-13) and 5-(2',4'-difluoro-4-hydroxybiphenyl-3-yl)-4- (substituted)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (14-17) were synthesized and evaluated for antibacterial activity in vitro against H. pylori.Results:All of the tested compounds showed remarkable antibacterial activity compared to the standard drugs (Ornidazole, Metronidazole, Nitrimidazin and Clarithromycin). Compounds 4 and 13 showed activity as 2µg/ml MIC value.Conclusion:In addition, we have investigated binding modes and energy of the compounds 4 and 13 on urease enzyme active by using the molecular docking tools.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 426
Author(s):  
Kimberly Sánchez-Alonzo ◽  
Fabiola Silva-Mieres ◽  
Luciano Arellano-Arriagada ◽  
Cristian Parra-Sepúlveda ◽  
Humberto Bernasconi ◽  
...  

Helicobacter pylori, a Gram-negative bacterium, has as a natural niche the human gastric epithelium. This pathogen has been reported to enter into Candida yeast cells; however, factors triggering this endosymbiotic relationship remain unknown. The aim of this work was to evaluate in vitro if variations in nutrient concentration in the cultured medium trigger the internalization of H. pylori within Candida cells. We used H. pylori–Candida co-cultures in Brucella broth supplemented with 1%, 5% or 20% fetal bovine serum or in saline solution. Intra-yeast bacteria-like bodies (BLBs) were observed using optical microscopy, while intra-yeast BLBs were identified as H. pylori using FISH and PCR techniques. Intra-yeast H. pylori (BLBs) viability was confirmed using the LIVE/DEAD BacLight Bacterial Viability kit. Intra-yeast H. pylori was present in all combinations of bacteria–yeast strains co-cultured. However, the percentages of yeast cells harboring bacteria (Y-BLBs) varied according to nutrient concentrations and also were strain-dependent. In conclusion, reduced nutrients stresses H. pylori, promoting its entry into Candida cells. The starvation of both H. pylori and Candida strains reduced the percentages of Y-BLBs, suggesting that starving yeast cells may be less capable of harboring stressed H. pylori cells. Moreover, the endosymbiotic relationship between H. pylori and Candida is dependent on the strains co-cultured.


2021 ◽  
Vol 22 (12) ◽  
pp. 6643
Author(s):  
Pawel Jaworski ◽  
Dorota Zyla-Uklejewicz ◽  
Malgorzata Nowaczyk-Cieszewska ◽  
Rafal Donczew ◽  
Thorsten Mielke ◽  
...  

oriC is a region of the bacterial chromosome at which the initiator protein DnaA interacts with specific sequences, leading to DNA unwinding and the initiation of chromosome replication. The general architecture of oriCs is universal; however, the structure of oriC and the mode of orisome assembly differ in distantly related bacteria. In this work, we characterized oriC of Helicobacter pylori, which consists of two DnaA box clusters and a DNA unwinding element (DUE); the latter can be subdivided into a GC-rich region, a DnaA-trio and an AT-rich region. We show that the DnaA-trio submodule is crucial for DNA unwinding, possibly because it enables proper DnaA oligomerization on ssDNA. However, we also observed the reverse effect: DNA unwinding, enabling subsequent DnaA–ssDNA oligomer formation—stabilized DnaA binding to box ts1. This suggests the interplay between DnaA binding to ssDNA and dsDNA upon DNA unwinding. Further investigation of the ts1 DnaA box revealed that this box, together with the newly identified c-ATP DnaA box in oriC1, constitute a new class of ATP–DnaA boxes. Indeed, in vitro ATP–DnaA unwinds H. pylori oriC more efficiently than ADP–DnaA. Our results expand the understanding of H. pylori orisome formation, indicating another regulatory pathway of H. pylori orisome assembly.


2021 ◽  
Vol 9 (2) ◽  
pp. 240
Author(s):  
Bruno Cavadas ◽  
Marina Leite ◽  
Nicole Pedro ◽  
Ana C. Magalhães ◽  
Joana Melo ◽  
...  

The continuous characterization of genome-wide diversity in population and case–cohort samples, allied to the development of new algorithms, are shedding light on host ancestry impact and selection events on various infectious diseases. Especially interesting are the long-standing associations between humans and certain bacteria, such as the case of Helicobacter pylori, which could have been strong drivers of adaptation leading to coevolution. Some evidence on admixed gastric cancer cohorts have been suggested as supporting Homo-Helicobacter coevolution, but reliable experimental data that control both the bacterium and the host ancestries are lacking. Here, we conducted the first in vitro coinfection assays with dual human- and bacterium-matched and -mismatched ancestries, in African and European backgrounds, to evaluate the genome wide gene expression host response to H. pylori. Our results showed that: (1) the host response to H. pylori infection was greatly shaped by the human ancestry, with variability on innate immune system and metabolism; (2) African human ancestry showed signs of coevolution with H. pylori while European ancestry appeared to be maladapted; and (3) mismatched ancestry did not seem to be an important differentiator of gene expression at the initial stages of infection as assayed here.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 845
Author(s):  
Candace Goodman ◽  
Katrina N. Lyon ◽  
Aitana Scotto ◽  
Cyra Smith ◽  
Thomas A. Sebrell ◽  
...  

Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed the antibacterial effects of black and red raspberries and blackberries on H. pylori. Freeze-dried powders and organic extracts from black and red raspberries and blackberries were prepared, and high-performance liquid chromatography was used to measure the concentrations of anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, a high-throughput metabolic growth assay based on the Biolog system was developed and validated with the antibiotic metronidazole. Biocompatibility was analyzed using human gastric organoids. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. Antimicrobial activity was higher for extracts than powders and appeared to be independent of the anthocyanin concentration. Importantly, human gastric epithelial cell viability was not negatively impacted by black raspberry extract applied at the concentration required for complete bacterial growth inhibition. Our data suggest that black and red raspberry and blackberry extracts may have potential applications in the treatment and prevention of H. pylori infection but differ widely in their MICs. Moreover, we demonstrate that the Biolog metabolic assay is suitable for high-throughput antimicrobial susceptibility screening of H. pylori.


Sign in / Sign up

Export Citation Format

Share Document