scholarly journals Genetic Variation and Evolution of the Pathogenicity Island of Enterococcus faecalis

2009 ◽  
Vol 191 (10) ◽  
pp. 3392-3402 ◽  
Author(s):  
Shonna M. McBride ◽  
Phillip S. Coburn ◽  
Arto S. Baghdayan ◽  
Rob J. L. Willems ◽  
Maria J. Grande ◽  
...  

ABSTRACT Enterococcus faecalis is a leading cause of nosocomial infections and is known for its ability to acquire and transfer virulence and antibiotic resistance determinants from other organisms. A 150-kb pathogenicity island (PAI) encoding several genes that contribute to pathogenesis was identified among antibiotic-resistant clinical isolates. In the current study, we examined the structure of the PAI in a collection of isolates from diverse sources in order to gain insight into its genesis and dynamics. Using multilocus sequence typing to assess relatedness at the level of strain background and microarray analysis to identify variations in the PAI, we determined the extent to which structural variations occur within the PAI and also the extent to which these variations occur independently of the chromosome. Our findings provide evidence for a modular gain of defined gene clusters by the PAI. These results support horizontal transfer as the mechanism for accretion of genes into the PAI and highlight a likely role for mobile elements in the evolution of the E. faecalis PAI.

2019 ◽  
Author(s):  
Marinelle Rodrigues ◽  
Sara W. McBride ◽  
Karthik Hullahalli ◽  
Kelli L. Palmer ◽  
Breck A. Duerkop

AbstractThe innovation of new therapies to combat multidrug-resistant (MDR) bacteria is being outpaced by the continued rise of MDR bacterial infections. Of particular concern are hospital-acquired infections (HAIs) recalcitrant to antibiotic therapies. The Gram-positive intestinal pathobiontEnterococcus faecalisis associated with HAIs and some strains are MDR. Therefore, novel strategies to controlE. faecalispopulations are needed. We previously characterized anE. faecalisType II CRISPR-Cas system and demonstrated its utility in the sequence-specific removal of antibiotic resistance determinants. Here we present work describing the adaption of this CRISPR-Cas system into a constitutively expressed module encoded on a pheromone-responsive conjugative plasmid that efficiently transfers toE. faecalisfor the selective removal of antibiotic resistance genes. Usingin vitrocompetition assays, we show that these CRISPR-Cas-encoding delivery plasmids, or CRISPR-Cas antimicrobials, can reduce the occurrence of antibiotic resistance in enterococcal populations in a sequence-specific manner. Furthermore, we demonstrate that deployment of CRISPR-Cas antimicrobials in the murine intestine reduces the occurrence of antibiotic-resistantE. faecalisby several orders of magnitude. Finally, we show thatE. faecalisdonor strains harboring CRISPR-Cas antimicrobials are immune to uptake of antibiotic resistance determinantsin vivo. Our results demonstrate that conjugative delivery of CRISPR-Cas antimicrobials may be adaptable for future deployment from probiotic bacteria for exact targeting of defined MDR bacteria or for precision engineering of polymicrobial communities in the mammalian intestine.ImportanceCRISPR-Cas nucleic acid targeting systems hold promise for the amelioration of multidrug-resistant enterococci, yet the utility of such tools in the context of the intestinal environment where enterococci reside is understudied. We describe the development of a CRISPR-Cas antimicrobial, deployed on a conjugative plasmid, for the targeted removal of antibiotic resistance genes from intestinalEnterococcus faecalis. We demonstrate that CRISPR-Cas targeting reduces antibiotic resistance ofE. faecalisby several orders of magnitude in the intestine. Although barriers exist that influence the penetrance of the conjugative CRISPR-Cas antimicrobial among target recipientE. faecaliscells, the removal of antibiotic resistance genes inE. faecalisupon uptake of the CRISPR-Cas antimicrobial is absolute. In addition, cells that obtain the CRISPR-Cas antimicrobial are immunized against the acquisition of new antibiotic resistance genes. This study suggests a potential path toward plasmid based CRISPR-Cas therapies in the intestine.


2012 ◽  
Vol 75 (9) ◽  
pp. 1595-1602 ◽  
Author(s):  
CINDY-LOVE TREMBLAY ◽  
ANN LETELLIER ◽  
SYLVAIN QUESSY ◽  
DANIELLE DAIGNAULT ◽  
MARIE ARCHAMBAULT

This study was conducted to determine plasmid colocalization and transferability of both erm(B) and tet(M) genes in Enterococcus faecalis isolates from abattoir pigs in Canada. A total of 124 E. faecalis isolates from cecal contents of abattoir pigs were examined for antibiotic susceptibility. High percentages of resistance to macrolides and tetracyclines were found. Two predominant multiresistance patterns of E. faecalis were examined by PCR and sequencing for the presence of genes encoding antibiotic resistance. Various combinations of antibiotic resistance genes were detected; erm(B) and tet(M) were the most common genes. Plasmid profiling and hybridization revealed that both genes were colocated on a ~9-kb transferable plasmid in six strains with the two predominant multiresistant patterns. Plasmid colocalization and cotransfer of tet(M) and erm(B) genes in porcine E. faecalis isolates indicates that antibiotic coselection and transferability could occur via this single genetic element. To our knowledge, this is the first report on plasmid colocalization and transferability of erm(B) and tet(M) genes in E. faecalis on a mobile genetic element of ~9 kb. Physical linkage between important antibiotic resistance determinants in enterococci is of interest for predicting potential transfer to other bacterial genera.


2020 ◽  
Vol 9 (20) ◽  
Author(s):  
Natalia Purta ◽  
Taylor Miller-Ensminger ◽  
Adelina Voukadinova ◽  
Alan J. Wolfe ◽  
Catherine Putonti

Here, we introduce the 2.8-Mbp draft genome of Enterococcus faecalis strain UMB0843, isolated from the female urinary tract. E. faecalis is a leading cause of nosocomial infections, and many strains are often resistant to multiple antibiotics. We focus our genome analysis on the multiple genes involved in antibiotic resistance in this strain.


2020 ◽  
Vol 22 (2) ◽  
pp. 418-429 ◽  
Author(s):  
Jingyu Wang ◽  
Minghao Sui ◽  
Hongwei Li ◽  
Bojie Yuan

Ultraviolet disinfection could effectively inactivate the antibiotic resistant bacterium vancomycin resistant Enterococcus faecalis, but had a limited removal efficiency for the antibiotic resistance gene–vanB gene.


Author(s):  
E.A. Kolesnikova ◽  
N.F. Brusnigina ◽  
G.I. Grigor’eva

Urogenital mycoplasmas (Mycoplasma genitalium, Mycoplasma hominis and Ureaplasma spp.) currently prevail in the etiology of infections of the urogenital tract and are characterized by a high level of genetic polymorphism responsible for the occurrence of their antibiotic resistance. The review presents the data of domestic and foreign researchers on the resistance mechanisms of mycoplasmas and ureaplasmas to antibiotics and considers the acquisition by mycoplasmas of antibiotic resistance determinants. New knowledge of resistance mechanisms is important theoretical basis for improving measures to limit and prevent the spread of antibiotic resistant bacteria.


2017 ◽  
Vol 65 (4) ◽  
pp. 461-474 ◽  
Author(s):  
Tulay Elal Mus ◽  
Figen Cetinkaya ◽  
Recep Cibik ◽  
Gul Ece Soyutemiz ◽  
Husniye Simsek ◽  
...  

In this study, the presence of genes responsible for the pathogenicity and antibiotic resistance profile of enterococci isolated from various foodstuffs of animal origin was investigated. The percentage prevalence of enterococci was 54.1% (203/375) and the average count was found to be 3.81 log cfu/ml-g. Species-specific primers revealed Enterococcus faecalis as the predominant species carrying one or more virulence-associated traits of efa, gelE, ace, esp and agg genetic markers. Only one E. faecium isolate (from milk) was positive for the esp gene. Regarding antibiotic resistance, the highest frequency of resistance was observed for tetracycline (21.7%), followed by quinupristin/dalfopristin (13.3%), ciprofloxacin (2.0%), penicillin (2.0%), linezolid (1.0%), ampicillin (1.0%), streptomycin (1.0%), and gentamicin (0.5%). Enterococcus faecalis showed a higher prevalence of antibiotic resistance than other enterococci. The percentage of multidrug resistance among the isolates was 3.4%. Twenty-nine E. faecalis isolates (26.6%) carrying one of the virulence-associated traits were at the same time resistant to at least one antibiotic. Our results show that foods of animal origin, including ready-to-eat products, may be reservoirs of antibiotic-resistant and potentially virulent enterococci.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Izabela Korona-Glowniak ◽  
Radoslaw Siwiec ◽  
Anna Malm

Multiple resistance ofStreptococcus pneumoniaeis generally associated with their unique recombination-mediated genetic plasticity and possessing the mobile genetic elements. The aim of our study was to detect antibiotic resistance determinants and conjugative transposons in 138 antibiotic-resistant pneumococcal strains isolated from nasopharynx of healthy young children from Lublin, Poland. These strains resistant to tetracycline and/or to chloramphenicol/erythromycin/clindamycin were tested by PCR using the specific genes as markers. The presence of Tn916family transposons, carryingtet(M) andint/xisTn916, was observed in all of the tested strains. Tn916was detected in 16 strains resistant only to tetracycline. Tn6002and Tn3872-related element were found among 99erm(B)-carrying strains (83.8% and 3.0%, resp.). Eight strains harbouringmef(E) anderm(B) genes were detected, suggesting the presence of Tn2010and Tn2017transposons. Among 101 chloramphenicol-resistant strains, two variants of Tn5252-related transposon were distinguished depending on the presence ofint/xis5252genes specific forcatgene-containing Tn5252(75.2% of strains) orintSp23FST81gene, specific forcat-containing ICESp23FST81 element (24.8% of strains). In 6 strains Tn916-like and Tn5252-like elements formed a Tn5253-like structure. Besides clonal dissemination of resistant strains of pneumococci in the population, horizontal transfer of conjugative transposons is an important factor of the high prevalence of antibiotic resistance.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Marinelle Rodrigues ◽  
Sara W. McBride ◽  
Karthik Hullahalli ◽  
Kelli L. Palmer ◽  
Breck A. Duerkop

ABSTRACT The innovation of new therapies to combat multidrug-resistant (MDR) bacteria is being outpaced by the continued rise of MDR bacterial infections. Of particular concern are hospital-acquired infections (HAIs) that are recalcitrant to antibiotic therapies. The Gram-positive intestinal pathobiont Enterococcus faecalis is associated with HAIs, and some strains are MDR. Therefore, novel strategies to control E. faecalis populations are needed. We previously characterized an E. faecalis type II CRISPR-Cas system and demonstrated its utility in the sequence-specific removal of antibiotic resistance determinants. Here, we present work describing the adaption of this CRISPR-Cas system into a constitutively expressed module encoded on a pheromone-responsive conjugative plasmid that efficiently transfers to E. faecalis for the selective removal of antibiotic resistance genes. Using in vitro competition assays, we show that these CRISPR-Cas-encoding delivery plasmids, or CRISPR-Cas antimicrobials, can reduce the occurrence of antibiotic resistance in enterococcal populations in a sequence-specific manner. Furthermore, we demonstrate that deployment of CRISPR-Cas antimicrobials in the murine intestine reduces the occurrence of antibiotic-resistant E. faecalis by several orders of magnitude. Finally, we show that E. faecalis donor strains harboring CRISPR-Cas antimicrobials are immune to uptake of antibiotic resistance determinants in vivo. Our results demonstrate that conjugative delivery of CRISPR-Cas antimicrobials may be adaptable for future deployment from probiotic bacteria for exact targeting of defined MDR bacteria or for precision engineering of polymicrobial communities in the mammalian intestine.


2015 ◽  
Vol 59 (7) ◽  
pp. 4094-4105 ◽  
Author(s):  
Jennifer L. Dale ◽  
Julian Cagnazzo ◽  
Chi Q. Phan ◽  
Aaron M. T. Barnes ◽  
Gary M. Dunny

ABSTRACTThe emergence of multidrug-resistant bacteria and the limited availability of new antibiotics are of increasing clinical concern. A compounding factor is the ability of microorganisms to form biofilms (communities of cells encased in a protective extracellular matrix) that are intrinsically resistant to antibiotics.Enterococcus faecalisis an opportunistic pathogen that readily forms biofilms and also has the propensity to acquire resistance determinants via horizontal gene transfer. There is intense interest in the genetic basis for intrinsic and acquired antibiotic resistance inE. faecalis, since clinical isolates exhibiting resistance to multiple antibiotics are not uncommon. We performed a genetic screen using a library of transposon (Tn) mutants to identifyE. faecalisbiofilm-associated antibiotic resistance determinants. Five Tn mutants formed wild-type biofilms in the absence of antibiotics but produced decreased biofilm biomass in the presence of antibiotic concentrations that were subinhibitory to the parent strain. Genetic determinants responsible for biofilm-associated antibiotic resistance include components of the quorum-sensing system (fsrA,fsrC, andgelE) and two glycosyltransferase (GTF) genes (epaIandepaOX). We also found that the GTFs play additional roles inE. faecalisresistance to detergent and bile salts, maintenance of cell envelope integrity, determination of cell shape, polysaccharide composition, and conjugative transfer of the pheromone-inducible plasmid pCF10. TheepaOXgene is located in a variable extended region of the enterococcal polysaccharide antigen (epa) locus. These data illustrate the importance of GTFs inE. faecalisadaptation to diverse growth conditions and suggest new targets for antimicrobial design.


Sign in / Sign up

Export Citation Format

Share Document