Bacterial Nanocompartments: Structures, Functions and Applications

2021 ◽  
Author(s):  
Harry Benjamin McDowell ◽  
Egbert Hoiczyk

Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.

Author(s):  
F.J. Sjostrand

In the 1940's and 1950's electron microscopy conferences were attended with everybody interested in learning about the latest technical developments for one very obvious reason. There was the electron microscope with its outstanding performance but nobody could make very much use of it because we were lacking proper techniques to prepare biological specimens. The development of the thin sectioning technique with its perfectioning in 1952 changed the situation and systematic analysis of the structure of cells could now be pursued. Since then electron microscopists have in general become satisfied with the level of resolution at which cellular structures can be analyzed when applying this technique. There has been little interest in trying to push the limit of resolution closer to that determined by the resolving power of the electron microscope.


Author(s):  
Antonia M. Milroy

In recent years many new techniques and instruments for 3-Dimensional visualization of electron microscopic images have become available. Higher accelerating voltage through thicker sections, photographed at a tilt for stereo viewing, or the use of confocal microscopy, help to analyze biological material without the necessity of serial sectioning. However, when determining the presence of neurotransmitter receptors or biochemical substances present within the nervous system, the need for good serial sectioning (Fig. 1+2) remains. The advent of computer assisted reconstruction and the possibility of feeding information from the specimen viewing chamber directly into a computer via a camera mounted on the electron microscope column, facilitates serial analysis. Detailed information observed at the subcellular level is more precise and extensive and the complexities of interactions within the nervous system can be further elucidated.We emphasize that serial ultra thin sectioning can be performed routinely and consistently in multiple user electron microscopy laboratories. Initial tissue fixation and embedding must be of high quality.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dongge Guo ◽  
Jianan Ding ◽  
Heng Liu ◽  
Lin Zhou ◽  
Jiang Feng ◽  
...  

Abstract Background Why a variety of social animals emit foraging-associated calls during group foraging remains an open question. These vocalizations may be used to recruit conspecifics to food patches (i.e. food advertisement hypothesis) or defend food resources against competitors (food defence hypothesis), presumably depending on food availability. Insectivorous bats rely heavily on vocalizations for navigation, foraging, and social interactions. In this study, we used free-ranging big-footed myotis (Myotis macrodactylus Temminck, 1840) to test whether social calls produced in a foraging context serve to advertise food patches or to ward off food competitors. Using a combination of acoustic recordings, playback experiments with adult females and dietary monitoring (light trapping and DNA metabarcoding techniques), we investigated the relationship between insect availability and social vocalizations in foraging bats. Results The big-footed myotis uttered low-frequency social calls composed of 7 syllable types during foraging interactions. Although the dietary composition of bats varied across different sampling periods, Diptera, Lepidoptera, and Trichoptera were the most common prey consumed. The number of social vocalizations was primarily predicted by insect abundance, insect species composition, and echolocation vocalizations from conspecifics. The number of conspecific echolocation pulses tended to decrease following the emission of most social calls. Feeding bats consistently decreased foraging attempts and food consumption during playbacks of social calls with distinctive structures compared to control trials. The duration of flight decreased 1.29–1.96 fold in the presence of social calls versus controls. Conclusions These results support the food defence hypothesis, suggesting that foraging bats employ social calls to engage in intraspecific food competition. This study provides correlative evidence for the role of insect abundance and diversity in influencing the emission of social calls in insectivorous bats. Our findings add to the current knowledge of the function of social calls in echolocating bats.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 299
Author(s):  
Vítor Ennes-Vidal ◽  
Marta Helena Branquinha ◽  
André Luis Souza dos Santos ◽  
Claudia Masini d’Avila-Levy

Calpains are calcium-dependent cysteine peptidases that were originally described in mammals and, thereafter, their homologues were identified in almost all known living organisms. The deregulated activity of these peptidases is associated with several pathologies and, consequently, huge efforts have been made to identify selective inhibitors. Trypanosomatids, responsible for life-threatening human diseases, possess a large and diverse family of calpain sequences in their genomes. Considering that the current therapy to treat trypanosomatid diseases is limited to a handful of drugs that suffer from unacceptable toxicity, tough administration routes, like parenteral, and increasing treatment failures, a repurposed approach with calpain inhibitors could be a shortcut to successful chemotherapy. However, there is a general lack of knowledge about calpain functions in these parasites and, currently, the proteolytic activity of these proteins is still an open question. Here, we highlight the current research and perspectives on trypanosomatid calpains, overview calpain description in these organisms, and explore the potential of targeting the calpain system as a therapeutic strategy. This review gathers the current knowledge about this fascinating family of peptidases as well as insights into the puzzle: are we unable to measure calpain activity in trypanosomatids, or are the functions of these proteins devoid of proteolytic activity in these parasites?


2009 ◽  
Vol 7 (suppl_1) ◽  
Author(s):  
Rakesh Kumar Harishchandra ◽  
Mohammed Saleem ◽  
Hans-Joachim Galla

One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding, the current knowledge about an established model surface film that mimics the surface properties of the lung is reviewed and major results originating from our group are summarized. The pure lipid components dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol have been used to study the biophysical behaviour of their monolayer films spread at the air–water interface in the presence of NPs. Film balance measurements combined with video-enhanced fluorescence microscopy have been used to investigate the formation of domain structures and the changes in the surface pattern induced by NPs. We are able to show that NPs are incorporated into lipid monolayers with a clear preference for defect structures at the fluid–crystalline interface leading to a considerable monolayer expansion and fluidization. NPs remain at the air–water interface probably by coating themselves with lipids in a self-assembly process, thereby exhibiting hydrophobic surface properties. We also show that the domain structure in lipid layers containing surfactant protein C, which is potentially responsible for the proper functioning of surfactant material, is considerably affected by NPs.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Toni Gabaldón

The origin of eukaryotes has been defined as the major evolutionary transition since the origin of life itself. Most hallmark traits of eukaryotes, such as their intricate intracellular organization, can be traced back to a putative common ancestor that predated the broad diversity of extant eukaryotes. However, little is known about the nature and relative order of events that occurred in the path from preexisting prokaryotes to this already sophisticated ancestor. The origin of mitochondria from the endosymbiosis of an alphaproteobacterium is one of the few robustly established events to which most hypotheses on the origin of eukaryotes are anchored, but the debate is still open regarding the time of this acquisition, the nature of the host, and the ecological and metabolic interactions between the symbiotic partners. After the acquisition of mitochondria, eukaryotes underwent a fast radiation into several major clades whose phylogenetic relationships have been largely elusive. Recent progress in the comparative analyses of a growing number of genomes is shedding light on the early events of eukaryotic evolution as well as on the root and branching patterns of the tree of eukaryotes. Here I discuss current knowledge and debates on the origin and early evolution of eukaryotes. I focus particularly on how phylogenomic analyses have challenged some of the early assumptions about eukaryotic evolution, including the widespread idea that mitochondrial symbiosis in an archaeal host was the earliest event in eukaryogenesis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3905 ◽  
Author(s):  
Jong-Min Lim ◽  
Sehee Jeong

Spherical PS/HEMA opal structure and spherical titania inverse opal structure were fabricated by self-assembly of colloidal nanoparticles in uniform aerosol droplets generated with electro-hydrodynamic atomization method. When a solution of PS/HEMA nanoparticles with uniform size distribution was used, PS/HEMA nanoparticles self-assembled into a face-centered cubic (FCC) structure by capillary force with the evaporation of the solvent in aerosol droplet, resulting in a spherical opal structure. When PS/HEMA nanoparticles and anatase titania nanoparticles were dispersed simultaneously into the solution, titania nanoparticles with relatively smaller size were assembled at the interstitial site of PS/HEMA nanoparticles packed in the FCC structure, resulting in a spherical opal composite structure. Spherical titania inverse opal structure was fabricated after removing PS/HEMA nanoparticles from the spherical opal composite structure by calcination.


2005 ◽  
Vol 280 (23) ◽  
pp. 22146-22153 ◽  
Author(s):  
Nikolaus Gersdorff ◽  
Eddie Kohfeldt ◽  
Takako Sasaki ◽  
Rupert Timpl ◽  
Nicolai Miosge

Recently a novel laminin γ3 chain was identified in mouse and human and shown to have the same modular structure as the laminin γ1 chain. We expressed two fragments of the γ3 chain in mammalian cells recombinantly. The first, domain VI/V, consisting of laminin N-terminal (domain VI) and four laminin-type epidermal growth factor-like (domain V) and laminin N-terminal modules, was shown to be essential for self-assembly of laminins. The other was domain III3–5, which consists of three laminin-type epidermal growth factor-like modules and is predicted to bind to nidogens. The γ3 VI/V fragment was a poor inhibitor for laminin-1 polymerization as was the β2 VI/V fragment. The γ3 III3–5 fragment bound to nidogen-1 and nidogen-2 with lower affinity than the γ1 III3–5 fragment. These data suggested that laminins containing the γ3 chain may assemble networks independent of other laminins. Polyclonal antibodies raised against γ3 VI/V and γ3 III3–5 showed no cross-reaction with homologous fragments from the γ1 and γ2 chains of laminin and allowed the establishment of γ chain-specific radioimmunoassays and light and electron microscopic immunostaining of tissues. This demonstrated a 20–100-fold lower content of the γ3 chain compared with the γ1 chain in various tissue extracts of adult mice. The expression of γ3 chain was highly tissue-specific. In contrast to earlier assumptions, the antibodies against the γ3 chain showed light microscopic staining exclusively in basement membrane zones of adult and embryonic tissues, such as the brain, kidney, skin, muscle, and testis. Ultrastructural immunogold staining localized the γ3 chain to basement membranes of these tissues.


2020 ◽  
Vol 73 (3) ◽  
pp. 85 ◽  
Author(s):  
Katie A. Wilson ◽  
Lily Wang ◽  
Hugo MacDermott-Opeskin ◽  
Megan L. O'Mara

Our current knowledge of the structural dynamics and complexity of lipid bilayers is still developing. Computational techniques, especially molecular dynamics simulations, have increased our understanding significantly as they allow us to model functions that cannot currently be experimentally resolved. Here we review available computational tools and techniques, the role of the major lipid species, insights gained into lipid bilayer structure and function from molecular dynamics simulations, and recent progress towards the computational modelling of the physiological complexity of eukaryotic lipid bilayers.


Sign in / Sign up

Export Citation Format

Share Document