Conserved Proline Residues of Bacillus subtilis Intramembrane Metalloprotease SpoIVFB Are Important for Substrate Interaction and Cleavage

2022 ◽  
Author(s):  
Sandra Olenic ◽  
Fiona Buchanan ◽  
Jordyn VanPortfliet ◽  
Daniel Parrell ◽  
Lee Kroos

Intramembrane metalloproteases regulate diverse biological processes by cleaving membrane-associated substrates within the membrane or near its surface. SpoIVFB is an intramembrane metalloprotease of Bacillus subtilis that cleaves Pro-σ K during endosporulation. Intramembrane metalloproteases have a broadly conserved NPDG motif, which in the structure of an archaeal enzyme is located in a short loop that interrupts a transmembrane segment facing the active site. The aspartate residue of the NPDG motif acts as a ligand of the zinc ion involved in catalysis. The functions of other residues in the short loop are less well understood. We found that the predicted short loop of SpoIVFB contains two highly conserved proline residues, P132 of the NPDG motif and P135. Mutational analysis revealed that both proline residues are important for Pro-σ K cleavage in Escherichia coli engineered to synthesize the proteins. Substitutions for either residue also impaired Pro-σ K interaction with SpoIVFB in co-purification assays. Disulfide cross-linking experiments showed that the predicted short loop of SpoIVFB is in proximity to the Proregion of Pro-σ K . Alanine substitutions for N129 and P132 of the SpoIVFB NPDG motif reduced cross-linking between its predicted short loop and the Proregion more than a P135A substitution. Conversely, the SpoIVFB P135A substitution reduced Pro-σ K cleavage more than the N129A and P132A substitutions during sporulation of B. subtilis . We conclude that all three conserved residues of SpoIVFB are important for substrate interaction and cleavage, and we propose that P135 is necessary to position D137 to act as a zinc ligand. IMPORTANCE Intramembrane metalloproteases (IMMPs) function in numerous signaling pathways. Bacterial IMMPs govern stress responses, including sporulation of some species, thus enhancing the virulence and persistence of pathogens. Knowledge of IMMP-substrate interactions could aid therapeutic design, but structures of IMMP·substrate complexes are unknown. We examined interaction of the IMMP SpoIVFB with its substrate Pro-σ K , whose cleavage is required for Bacillus subtilis endosporulation. We found that conserved proline residues in a short loop predicted to interrupt a SpoIVFB transmembrane segment are important for Pro-σ K binding and cleavage. Corresponding residues of the Escherichia coli IMMP RseP have also been shown to be important for substrate interaction and cleavage, suggesting this is a broadly conserved feature of IMMPs, potentially suitable as a therapeutic target.

1982 ◽  
Vol 152 (1) ◽  
pp. 275-283
Author(s):  
J Van Randen ◽  
K Wiersma ◽  
G Venema

In addition to stable donor-recipient DNA complexes, unstable complexes between donor and recipient DNA were formed in vitro with Bacillus subtilis. Whereas the stable complexes survived CsCl gradient centrifugation at pH 11.2 and phenol plus sodium p-aminosalicylate extraction with 0.17 M NaCl, the unstable complexes dissociated during these manipulations. The donor moiety from the unstable complexes remained associated with the recipient DNA during phenol plus sodium p-aminosalicylate treatment at 0.85 M NaCl. The unstable complexes could be stabilized artificially by cross-linking with 4,5',8-trimethylpsoralen. Dissociation of the complexes during CsCl gradient centrifugation could be prevented by centrifuging at pH 10. Heterologous DNA fragments derived from phage H1 DNA appeared to be unable to form complexes with the recipient B. subtilis DNA. Unstable complexes were also formed with Escherichia coli DNA, although under all conditions tested, more complex was detectable by using homologous B. subtilis DNA.


2007 ◽  
Vol 190 (5) ◽  
pp. 1507-1517 ◽  
Author(s):  
Phu Vuong ◽  
Drew Bennion ◽  
Jeremy Mantei ◽  
Danielle Frost ◽  
Rajeev Misra

ABSTRACT In Escherichia coli, YaeT, together with four lipoproteins, YfgL, YfiO, NlpB, and SmpA, forms a complex that is essential for β-barrel outer membrane protein biogenesis. Data suggest that YfgL and YfiO make direct but independent physical contacts with YaeT. Whereas the YaeT-YfiO interaction needs NlpB and SmpA for complex stabilization, the YaeT-YfgL interaction does not. Using bioinformatics, genetics, and biochemical approaches, we have identified three residues, L173, L175, and R176, in the mature YfgL protein that are critical for both function and interactions with YaeT. A single substitution at any of these sites produces no phenotypic defect, but two or three simultaneous alterations produce mild or yfgL-null phenotypes, respectively. Interestingly, biochemical data show that all YfgL variants, including those with single substitutions, have weakened in vivo YaeT-YfgL interaction. These defects are not due to mislocalization or low steady-state levels of YfgL. Cysteine-directed cross-linking data show that the region encompassing L173, L175, and R176 makes direct contact with YaeT. Using the same genetic and biochemical strategies, it was found that altering residues D227 and D229 in another region of YfgL from E221 to D229 resulted in defective YaeT bindings. In contrast, mutational analysis of conserved residues V319 to H328 of YfgL shows that they are important for YfgL biogenesis but not YfgL-YaeT interactions. The five YfgL mutants defective in YaeT associations and the yfgL background were used to show that SurA binds to YaeT (or another complex member) without going through YfgL.


2020 ◽  
Vol 39 (2) ◽  
pp. 600-606
Author(s):  
E. Atikpo ◽  
J.E. Ago ◽  
T.M. Peretomode ◽  
O.S. Edema ◽  
E.E. Oisakede ◽  
...  

This work is on remediation of zinc concentration (330.0 mg/kg) in soils from farm settlement at Agbabu community in Ondo State of Nigeria to below maximum allowable 300 mg/kg specified for safe agriculture by standards to ensure that farm products from this farm settlement close to area of mining are safe for human beings. Three indigenous organisms: Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and Proteus mirabilis (P. mirabilis) were engaged for the remediation study. The organisms were isolated and cultured. Optimum weights of the distinct organisms were inoculated in 4g soils each conditioned with optimum values of pH, temperature, stirring frequency and nutrient in thirty-six 50 ml beakers; and experimented for residual zinc ion at times 5, 10, 15, 20, 25, 30 and 35 days in triplicate with Atomic Absorption Spectrophotometer. Each organism maintained its performance position from day 5 to day 35. Bacillus subtilis took the lead, seconded by P. mirabilis while E. coli lagged. Removal to safe concentration first occurred at 10 days for B. subtilis, 15 days for P. mirabilis and 20 days for E. coli with respective 292.09 mg/kg, 294.37 mg/kg, and 290. 71 mg/kg residual concentrations. The respective residual concentrations and efficiencies at 35 days were 247.33 mg/kg and 25.06 %; 253.47 mg/kg and 23.20 %; and 267.11 mg/kg and 19.07 %. Two-ways ANOVA at (P < 0.05) showed that a combination of 2 or 3 of the organisms would result in lower residual concentration; and relevant performances at shorter times. Keywords: Zinc, contaminated soils, farm settlement, bioremediation


2017 ◽  
Vol 199 (19) ◽  
Author(s):  
Daniel Parrell ◽  
Yang Zhang ◽  
Sandra Olenic ◽  
Lee Kroos

ABSTRACT RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli, we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli. Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli, including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His6-MBP-RsiW(73–118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His6-MBP-FtsL(23–117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are typically inferred from genetic studies in the native bacterium. Evidence for direct effects has come sometimes from coexpression of the enzyme and potential substrate in a heterologous host and rarely from biochemical reconstitution of cleavage in vitro. We applied these two approaches to the B. subtilis enzyme RasP and its proposed substrates RsiW and FtsL. We discovered potential pitfalls and solutions in heterologous coexpression experiments in E. coli, providing evidence that both substrates are cleaved by RasP in vivo but, surprisingly, that only RsiW was cleaved in vitro, suggesting that FtsL has an additional requirement.


2018 ◽  
Vol 8 (2) ◽  
pp. 354-364
Author(s):  
A. N. Irkitova ◽  
A. V. Grebenshchikova ◽  
A. V. Matsyura

<p>An important link in solving the problem of healthy food is the intensification of the livestock, poultry and fish farming, which is possible only in the adoption and rigorous implementation of the concept of rational feeding of animals. In the implementation of this concept required is the application of probiotic preparations. Currently, there is an increased interest in spore probiotics. In many ways, this can be explained by the fact that they use no vegetative forms of the bacilli and their spores. This property provides spore probiotics a number of advantages: they are not whimsical, easily could be selected, cultivated, and dried. Moreover, they are resistant to various factors and could remain viable during a long period. One of the most famous spore microorganisms, which are widely used in agriculture, is <em>Bacillus subtilis</em>. Among the requirements imposed to probiotic microorganisms is mandatory – antagonistic activity to pathogenic and conditional-pathogenic microflora. The article presents the results of the analysis of antagonistic activity of collection strains of <em>B. subtilis</em>, and strains isolated from commercial preparations. We studied the antagonistic activity on agar and liquid nutrient medias to trigger different antagonism mechanisms of <em>B. subtilis</em>. On agar media, we applied three diffusion methods: perpendicular bands, agar blocks, agar wells. We also applied the method of co-incubating the test culture (<em>Escherichia coli</em>) and the antagonist (or its supernatant) in the nutrient broth. Our results demonstrated that all our explored strains of <em>B. subtilis</em> have antimicrobial activity against a wild strain of <em>E. coli</em>, but to varying degrees. We identified strains of <em>B. subtilis</em> with the highest antagonistic effect that can be recommended for inclusion in microbial preparations for agriculture.</p><p><em><br /></em><em></em></p>


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lixia Fang ◽  
Jie Fan ◽  
Shulei Luo ◽  
Yaru Chen ◽  
Congya Wang ◽  
...  

AbstractTo construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cellular potential by identifying and engineering beneficial gene targets in sophisticated metabolic networks. Here, we take advantage of CRISPR interference (CRISPRi) and omics analyses to systematically identify beneficial genes that can be engineered to promote free fatty acids (FFAs) production in Escherichia coli. CRISPRi-mediated genetic perturbation enables the identification of 30 beneficial genes from 108 targets related to FFA metabolism. Then, omics analyses of the FFAs-overproducing strains and a control strain enable the identification of another 26 beneficial genes that are seemingly irrelevant to FFA metabolism. Combinatorial perturbation of four beneficial genes involving cellular stress responses results in a recombinant strain ihfAL−-aidB+-ryfAM−-gadAH−, producing 30.0 g L−1 FFAs in fed-batch fermentation, the maximum titer in E. coli reported to date. Our findings are of help in rewiring cellular metabolism and interwoven intracellular processes to facilitate high-titer production of biochemicals.


Sign in / Sign up

Export Citation Format

Share Document