scholarly journals Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions

2017 ◽  
Vol 199 (21) ◽  
Author(s):  
Lindsey P. Burbank ◽  
Christopher R. Van Horn

ABSTRACT The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 (X. fastidiosa subsp. fastidiosa) or Dixon (X. fastidiosa subsp. multiplex) as the donor strain and Temecula (X. fastidiosa subsp. fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa, or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence in this diverse pathogen.

mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Peter Jorth ◽  
Marvin Whiteley

ABSTRACTNatural transformation by competent bacteria is a primary means of horizontal gene transfer; however, evidence that competence drives bacterial diversity and evolution has remained elusive. To test this theory, we used a retrospective comparative genomic approach to analyze the evolutionary history ofAggregatibacter actinomycetemcomitans, a bacterial species with both competent and noncompetent sister strains. Through comparative genomic analyses, we reveal that competence is evolutionarily linked to genomic diversity and speciation. Competence loss occurs frequently during evolution and is followed by the loss of clustered regularly interspaced short palindromic repeats (CRISPRs), bacterial adaptive immune systems that protect against parasitic DNA. Relative to noncompetent strains, competent bacteria have larger genomes containing multiple rearrangements. In contrast, noncompetent bacterial genomes are extremely stable but paradoxically susceptible to infective DNA elements, which contribute to noncompetent strain genetic diversity. Moreover, incomplete noncompetent strain CRISPR immune systems are enriched for self-targeting elements, which suggests that the CRISPRs have been co-opted for bacterial gene regulation, similar to eukaryotic microRNAs derived from the antiviral RNA interference pathway.IMPORTANCEThe human microbiome is rich with thousands of diverse bacterial species. One mechanism driving this diversity is horizontal gene transfer by natural transformation, whereby naturally competent bacteria take up environmental DNA and incorporate new genes into their genomes. Competence is theorized to accelerate evolution; however, attempts to test this theory have proved difficult. Through genetic analyses of the human periodontal pathogenAggregatibacter actinomycetemcomitans, we have discovered an evolutionary connection between competence systems promoting gene acquisition and CRISPRs (clustered regularly interspaced short palindromic repeats), adaptive immune systems that protect bacteria against genetic parasites. We show that competentA. actinomycetemcomitansstrains have numerous redundant CRISPR immune systems, while noncompetent bacteria have lost their CRISPR immune systems because of inactivating mutations. Together, the evolutionary data linking the evolution of competence and CRISPRs reveals unique mechanisms promoting genetic heterogeneity and the rise of new bacterial species, providing insight into complex mechanisms underlying bacterial diversity in the human body.


2015 ◽  
Vol 197 (16) ◽  
pp. 2653-2663 ◽  
Author(s):  
Cedric A. Brimacombe ◽  
Hao Ding ◽  
Jeanette A. Johnson ◽  
J. Thomas Beatty

ABSTRACTGene transfer agents (GTAs) morphologically resemble small, double-stranded DNA (dsDNA) bacteriophages; however, their only known role is to package and transfer random pieces of the producing cell genome to recipient cells. The best understood GTA is that ofRhodobacter capsulatus, termed RcGTA. We discovered that homologues of three genes involved in natural transformation in other bacteria,comEC,comF, andcomM, are essential for RcGTA-mediated gene acquisition. This paper gives genetic and biochemical evidence that RcGTA-borne DNA entry into cells requires the ComEC and ComF putative DNA transport proteins and genetic evidence that putative cytoplasmic ComM protein of unknown function is required for recipient capability. Furthermore, the master regulator of RcGTA production in <1% of a cell population, CtrA, which is also required for gene acquisition in recipient cells, is expressed in the vast majority of the population. Our results indicate that RcGTA-mediated gene transfer combines key aspects of two bacterial horizontal gene transfer mechanisms, where donor DNA is packaged in transducing phage-like particles and recipient cells take up DNA using natural transformation-related machinery. Both of these differentiated subsets of a culture population, donors and recipients, are dependent on the same response regulator, CtrA.IMPORTANCEHorizontal gene transfer (HGT) is a major driver of bacterial evolution and adaptation to environmental stresses. Traits such as antibiotic resistance or metabolic properties can be transferred between bacteria via HGT; thus, HGT can have a tremendous effect on the fitness of a bacterial population. The three classically described HGT mechanisms are conjugation, transformation, and phage-mediated transduction. More recently, the HGT factor GTA was described, where random pieces of producing cell genome are packaged into phage-like particles that deliver DNA to recipient cells. In this report, we show that transport of DNA borne by theR. capsulatusRcGTA into recipient cells requires key genes previously thought to be specific to natural transformation pathways. These findings indicate that RcGTA combines central aspects of phage-mediated transduction and natural transformation in an efficient, regulated mode of HGT.


2020 ◽  
Vol 203 (3) ◽  
Author(s):  
Léo Hardy ◽  
Pierre-Alexandre Juan ◽  
Bénédicte Coupat-Goutaland ◽  
Xavier Charpentier

ABSTRACT Legionella pneumophila is a Gram-negative bacterium ubiquitous in freshwater environments which, if inhaled, can cause a severe pneumonia in humans. The emergence of L. pneumophila is linked to several traits selected in the environment, the acquisition of some of which involved intra- and interkingdom horizontal gene transfer events. Transposon insertion sequencing (TIS) is a powerful method to identify the genetic basis of selectable traits as well as to identify fitness determinants and essential genes, which are possible antibiotic targets. TIS has not yet been used to its full power in L. pneumophila, possibly because of the difficulty of obtaining a high-saturation transposon insertion library. Indeed, we found that isolates of sequence type 1 (ST1), which includes the commonly used laboratory strains, are poorly permissive to saturating mutagenesis by conjugation-mediated transposon delivery. In contrast, we obtained high-saturation libraries in non-ST1 clinical isolates, offering the prospect of using TIS on unaltered L. pneumophila strains. Focusing on one of them, we then used TIS to identify essential genes in L. pneumophila. We also revealed that TIS could be used to identify genes controlling vertical transmission of mobile genetic elements. We then applied TIS to identify all the genes required for L. pneumophila to develop competence and undergo natural transformation, defining the set of major and minor type IV pilins that are engaged in DNA uptake. This work paves the way for the functional exploration of the L. pneumophila genome by TIS and the identification of the genetic basis of other life traits of this species. IMPORTANCE Legionella pneumophila is the etiologic agent of a severe form of nosocomial and community-acquired pneumonia in humans. The environmental life traits of L. pneumophila are essential to its ability to accidentally infect humans. A comprehensive identification of their genetic basis could be obtained through the use of transposon insertion sequencing. However, this powerful approach had not been fully implemented in L. pneumophila. Here, we describe the successful implementation of the transposon-sequencing approach in a clinical isolate of L. pneumophila. We identify essential genes, potential drug targets, and genes required for horizontal gene transfer by natural transformation. This work represents an important step toward identifying the genetic basis of the many life traits of this environmental and pathogenic species.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Roy Ummels ◽  
Abdallah M. Abdallah ◽  
Vincent Kuiper ◽  
Anouar Aâjoud ◽  
Marion Sparrius ◽  
...  

ABSTRACTConjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjugative plasmid that seems to be unique for mycobacteria. Interestingly, while this plasmid is efficiently exchanged between different species of slow-growing mycobacteria, includingMycobacterium tuberculosis, it could not be transferred to any of the fast-growing mycobacteria tested. Genetic analysis of the conjugative plasmid showed the presence of a locus containing homologues of three type IV secretion system components and a relaxase. In addition, a new type VII secretion locus was present. Using transposon insertion mutagenesis, we show that in fact both these secretion systems are essential for conjugation, indicating that this plasmid represents a new class of conjugative plasmids requiring two secretion machineries. This plasmid could form a useful new tool to exchange or introduce DNA in slow-growing mycobacteria.IMPORTANCEConjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted thatM. tuberculosisdoes not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred toM. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of antibiotic resistance genes between pathogenic mycobacteria. The opportunity is that we could use this plasmid to generate new tools for the efficient introduction of foreign DNA in slow-growing mycobacteria.


2014 ◽  
Vol 58 (4) ◽  
pp. 2289-2294 ◽  
Author(s):  
Liang Chen ◽  
Kalyan D. Chavda ◽  
Roberto G. Melano ◽  
Tao Hong ◽  
Albert D. Rojtman ◽  
...  

ABSTRACTKlebsiella pneumoniaecarbapenemase (KPC)-producingK. pneumoniaestrains have spread worldwide and become a major threat in health care facilities. Transmission ofblaKPC, the plasmid-borne KPC gene, can be mediated by clonal spread and horizontal transfer. Here, we report the complete nucleotide sequences of two novelblaKPC-3-harboring IncFIA plasmids, pBK30661 and pBK30683. pBK30661 is 74 kb in length, with a mosaic plasmid structure; it exhibits homologies to several other plasmids but lacks the plasmid transfer operon (tra) and the origin of transfer (oriT) that are required for plasmid transfer. pBK30683 is a conjugative plasmid with a cointegrated plasmid structure, comprising a 72-kb element that highly resembles pBK30661 (>99.9% nucleotide identities) and an extra 68-kb element that harborstraandoriT. A PCR scheme was designed to detect the distribution ofblaKPC-harboring IncFIA (pBK30661-like and pBK30683-like) plasmids in a collection of clinicalEnterobacteriaceaeisolates from 10 hospitals in New Jersey and New York. KPC-harboring IncFIA plasmids were found in 20% of 491K. pneumoniaeisolates, and all carriedblaKPC-3. pBK30661-like plasmids were identified mainly in the epidemic sequence type 258 (ST258)K. pneumoniaeclone, while pBK30683-like plasmids were widely distributed in ST258 and otherK. pneumoniaesequence types and among non-K. pneumoniae Enterobacteriaceaespecies. This suggests that both clonal spread and horizontal plasmid transfer contributed to the dissemination ofblaKPC-harboring IncFIA plasmids in our area. Further studies are needed to understand the distribution of this plasmid group in other health care regions and to decipher the origins of pBK30661-like and pBK30683-like plasmids.


2017 ◽  
Vol 5 (23) ◽  
Author(s):  
Adam Kotorashvili ◽  
Galina Meparishvili ◽  
Giorgi Gogoladze ◽  
Nato Kotaria ◽  
Maka Muradashvili ◽  
...  

ABSTRACT Ralstonia solanacearum, the causative agent of bacterial wilt, is a devastating bacterial plant pathogen with a wide range of hosts. We report here the first draft genome sequences for three strains of Ralstonia solanacearum isolated from infected potato, tomato, and pepper plants in Georgia.


2011 ◽  
Vol 77 (15) ◽  
pp. 5079-5088 ◽  
Author(s):  
Jaroslaw E. Król ◽  
Hung Duc Nguyen ◽  
Linda M. Rogers ◽  
Haluk Beyenal ◽  
Stephen M. Krone ◽  
...  

ABSTRACTAlthough biofilms represent a common bacterial lifestyle in clinically and environmentally important habitats, there is scant information on the extent of gene transfer in these spatially structured populations. The objective of this study was to gain insight into factors that affect transfer of the promiscuous multidrug resistance plasmid pB10 inEscherichia colibiofilms. Biofilms were grown in different experimental settings, and plasmid transfer was monitored using laser scanning confocal microscopy and plate counting. In closed flow cells, plasmid transfer in surface-attached submerged biofilms was negligible. In contrast, a high plasmid transfer efficiency was observed in a biofilm floating at the air-liquid interface in an open flow cell with low flow rates. A vertical flow cell and a batch culture biofilm reactor were then used to detect plasmid transfer at different depths away from the air-liquid interface. Extensive plasmid transfer occurred only in a narrow zone near that interface. The much lower transfer frequencies in the lower zones coincided with rapidly decreasing oxygen concentrations. However, when anE. colicsrAmutant was used as the recipient, a thick biofilm was obtained at all depths, and plasmid transfer occurred at similar frequencies throughout. These results and data from separate aerobic and anaerobic matings suggest that oxygen can affect IncP-1 plasmid transfer efficiency, not only directly but also indirectly, through influencing population densities and therefore colocalization of donors and recipients. In conclusion, the air-liquid interface can be a hot spot for plasmid-mediated gene transfer due to high densities of juxtaposed donor and recipient cells.


2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Prem P. Kandel ◽  
Hongyu Chen ◽  
Leonardo De La Fuente

ABSTRACT Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2. IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.


2014 ◽  
Vol 80 (20) ◽  
pp. 6446-6457 ◽  
Author(s):  
Miguel A. Matilla ◽  
George P. C. Salmond

ABSTRACTMembers of the enterobacterial genusSerratiaare ecologically widespread, and some strains are opportunistic human pathogens. Bacteriophage ϕMAM1 was isolated onSerratia plymuthicaA153, a biocontrol rhizosphere strain that produces the potently bioactive antifungal and anticancer haterumalide oocydin A. The ϕMAM1 phage is a generalized transducing phage that infects multiple environmental and clinical isolates ofSerratiaspp. and a rhizosphere strain ofKluyvera cryocrescens. Electron microscopy allowed classification of ϕMAM1 in the familyMyoviridae. Bacteriophage ϕMAM1 is virulent, uses capsular polysaccharides as a receptor, and can transduce chromosomal markers at frequencies of up to 7 × 10−6transductants per PFU. We also demonstrated transduction of the complete 77-kb oocydin A gene cluster and heterogeneric transduction of a plasmid carrying a type III toxin-antitoxin system. These results support the notion of the potential ecological importance of transducing phages in the acquisition of genes by horizontal gene transfer. Phylogenetic analyses grouped ϕMAM1 within the ViI-like bacteriophages, and genomic analyses revealed that the major differences between ϕMAM1 and other ViI-like phages arise in a region encoding the host recognition determinants. Our results predict that the wider genus of ViI-like phages could be efficient transducing phages, and this possibility has obvious implications for the ecology of horizontal gene transfer, bacterial functional genomics, and synthetic biology.


2016 ◽  
Vol 82 (8) ◽  
pp. 2320-2335 ◽  
Author(s):  
Anna Kulinska ◽  
Jolanta Godziszewska ◽  
Anna Wojciechowska ◽  
Marta Ludwiczak ◽  
Grazyna Jagura-Burdzy

ABSTRACTThe KorB protein of the broad-host-range conjugative plasmid RA3 from the IncU group belongs to the ParB family of plasmid and chromosomal segregation proteins. As a partitioning DNA-binding factor, KorB specifically recognizes a 16-bp palindrome which is an essential motif in the centromere-like sequenceparSRA3, forms a segrosome, and together with its partner IncC (ParA family) participates in active DNA segregation ensuring stable plasmid maintenance. Here we show that by binding to this palindromic sequence, KorB also acts as a repressor for the adjacentmobCpromoter driving expression of themobC-nicoperon, which is involved in DNA processing during conjugation. Three other promoters, one buried in the conjugative transfer module and two divergent promoters located at the border between the replication and stability regions, are regulated by KorB binding to additional KorB operators (OBs). KorB acts as a repressor at a distance, binding to OBs separated from their cognate promoters by between 46 and 1,317 nucleotides. This repressor activity is facilitated by KorB spreading along DNA, since a polymerization-deficient KorB variant with its dimerization and DNA-binding abilities intact is inactive in transcriptional repression. KorB may act as a global regulator of RA3 plasmid functions inEscherichia coli, since its overexpression intransnegatively interferes with mini-RA3 replication and stable maintenance of RA3.


Sign in / Sign up

Export Citation Format

Share Document