scholarly journals Regulation of Chlamydia Gene Expression by Tandem Promoters with Different Temporal Patterns

2015 ◽  
Vol 198 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Christopher J. Rosario ◽  
Ming Tan

ABSTRACTChlamydiais a genus of pathogenic bacteria with an unusual intracellular developmental cycle marked by temporal waves of gene expression. The three main temporal groups of chlamydial genes are proposed to be controlled by separate mechanisms of transcriptional regulation. However, we have noted genes with discrepancies, such as the early genednaKand the midcycle genesbioYandpgk, which have promoters controlled by the late transcriptional regulators EUO and σ28. To resolve this issue, we analyzed the promoters of these three genesin vitroand inChlamydia trachomatisbacteria grown in cell culture. Transcripts from the σ28-dependent promoter of each gene were detected only at late times in the intracellular infection, bolstering the role of σ28RNA polymerase in late gene expression. In each case, however, expression prior to late times was due to a second promoter that was transcribed by σ66RNA polymerase, which is the major form of chlamydial polymerase. These results demonstrate that chlamydial genes can be transcribed from tandem promoters with different temporal profiles, leading to a composite expression pattern that differs from the expression profile of a single promoter. In addition, tandem promoters allow a gene to be regulated by multiple mechanisms of transcriptional regulation, such as DNA supercoiling or late regulation by EUO and σ28. We discuss how tandem promoters broaden the repertoire of temporal gene expression patterns in the chlamydial developmental cycle and can be used to fine-tune the expression of specific genes.IMPORTANCEChlamydiais a pathogenic bacterium that is responsible for the majority of infectious disease cases reported to the CDC each year. It causes an intracellular infection that is characterized by coordinated expression of chlamydial genes in temporal waves. Chlamydial transcription has been shown to be regulated by DNA supercoiling, alternative forms of RNA polymerase, and transcription factors, but the number of transcription factors found inChlamydiais far fewer than the number found in most bacteria. This report describes the use of tandem promoters that allow the temporal expression of a gene or operon to be controlled by more than one regulatory mechanism. This combinatorial strategy expands the range of expression patterns that are available to regulate chlamydial genes.

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Jainaba Manneh-Roussel ◽  
James R. J. Haycocks ◽  
Andrés Magán ◽  
Nicolas Perez-Soto ◽  
Kerstin Voelz ◽  
...  

ABSTRACTThe bacteriumVibrio choleraeis native to aquatic environments and can switch lifestyles to cause disease in humans. Lifestyle switching requires modulation of genetic systems for quorum sensing, intestinal colonization, and toxin production. Much of this regulation occurs at the level of gene expression and is controlled by transcription factors. In this work, we have mapped the binding of cAMP receptor protein (CRP) and RNA polymerase across theV. choleraegenome. We show that CRP is an integral component of the regulatory network that controls lifestyle switching. Focusing on a locus necessary for toxin transport, we demonstrate CRP-dependent regulation of gene expression in response to host colonization. Examination of further CRP-targeted genes reveals that this behavior is commonplace. Hence, CRP is a key regulator of manyV. choleraegenes in response to lifestyle changes.IMPORTANCECholera is an infectious disease that is caused by the bacteriumVibrio cholerae. Best known for causing disease in humans, the bacterium is most commonly found in aquatic ecosystems. Hence, humans acquire cholera following ingestion of food or water contaminated withV. cholerae. Transition between an aquatic environment and a human host triggers a lifestyle switch that involves reprogramming ofV. choleraegene expression patterns. This process is controlled by a network of transcription factors. In this paper, we show that the cAMP receptor protein (CRP) is a key regulator ofV. choleraegene expression in response to lifestyle changes.


2008 ◽  
Vol 190 (19) ◽  
pp. 6419-6427 ◽  
Author(s):  
Eike Niehus ◽  
Eric Cheng ◽  
Ming Tan

ABSTRACT The intracellular pathogen Chlamydia has an unusual developmental cycle marked by temporal expression patterns whose mechanisms of regulation are largely unknown. To examine if DNA topology can regulate chlamydial gene expression, we tested the in vitro activity of five chlamydial promoters at different superhelical densities. We demonstrated for the first time that individual chlamydial promoters show a differential response to changes in DNA supercoiling that correlates with the temporal expression pattern. The promoters for two midcycle genes, ompA and pgk, were responsive to alterations in supercoiling, and promoter activity could be regulated more than eightfold. In contrast, the promoters for three late transcripts, omcAB, hctA, and ltuB, were relatively insensitive to supercoiling, with promoter activity varying by no more than 2.2-fold over a range of superhelicities. To obtain a measure of how DNA supercoiling levels vary during the chlamydial developmental cycle, we recovered the cryptic chlamydial plasmid at different times after infection and assayed its superhelical density. The chlamydial plasmid was most negatively supercoiled at midcycle, with an approximate superhelical density of −0.07. At early and late times, the plasmid was more relaxed, with an approximate superhelicity of −0.03. Thus, we found a correlation between the responsiveness to supercoiling shown by the two midcycle promoters and the increased level of negative supercoiling during mid time points in the developmental cycle. Our results support a model in which the response of individual promoters to alterations in DNA supercoiling can provide a mechanism for global patterns of temporal gene expression in Chlamydia.


2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Gaili Fan ◽  
Huawei Zheng ◽  
Kai Zhang ◽  
Veena Devi Ganeshan ◽  
Stephen Obol Opiyo ◽  
...  

ABSTRACT The homeobox gene family of transcription factors (HTF) controls many developmental pathways and physiological processes in eukaryotes. We previously showed that a conserved HTF in the plant-pathogenic fungus Fusarium graminearum, Htf1 (FgHtf1), regulates conidium morphology in that organism. This study investigated the mechanism of FgHtf1-mediated regulation and identified putative FgHtf1 target genes by a chromatin immunoprecipitation assay combined with parallel DNA sequencing (ChIP-seq) and RNA sequencing. A total of 186 potential binding peaks, including 142 genes directly regulated by FgHtf1, were identified. Subsequent motif prediction analysis identified two DNA-binding motifs, TAAT and CTTGT. Among the FgHtf1 target genes were FgHTF1 itself and several important conidiation-related genes (e.g., FgCON7), the chitin synthase pathway genes, and the aurofusarin biosynthetic pathway genes. In addition, FgHtf1 may regulate the cAMP-protein kinase A (PKA)-Msn2/4 and Ca2+-calcineurin-Crz1 pathways. Taken together, these results suggest that, in addition to autoregulation, FgHtf1 also controls global gene expression and promotes a shift to aerial growth and conidiation in F. graminearum by activation of FgCON7 or other conidiation-related genes. IMPORTANCE The homeobox gene family of transcription factors is known to be involved in the development and conidiation of filamentous fungi. However, the regulatory mechanisms and downstream targets of homeobox genes remain unclear. FgHtf1 is a homeobox transcription factor that is required for phialide development and conidiogenesis in the plant pathogen F. graminearum. In this study, we identified FgHtf1-controlled target genes and binding motifs. We found that, besides autoregulation, FgHtf1 also controls global gene expression and promotes conidiation in F. graminearum by activation of genes necessary for aerial growth, FgCON7, and other conidiation-related genes.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1012-1017 ◽  
Author(s):  
Tatsuya Kobayashi ◽  
Henry Kronenberg

Regulation of gene expression by transcription factors is one of the major mechanisms for controlling cellular functions. Recent advances in genetic manipulation of model animals has allowed the study of the roles of various genes and their products in physiological settings and has demonstrated the importance of specific transcription factors in bone development. Three lineages of bone cells, chondrocytes, osteoblasts, and osteoclasts, develop and differentiate according to their distinct developmental programs. These cells go through multiple differentiation stages, which are often regulated by specific transcription factors. In this minireview, we will discuss selected transcription factors that have been demonstrated to critically affect bone cell development. Further study of these molecules will lead to deeper understanding in mechanisms that govern development of bone.


Author(s):  
Meijiang Gao ◽  
Marina Veil ◽  
Marcus Rosenblatt ◽  
Anna Gebhard ◽  
Helge Hass ◽  
...  

AbstractAwakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyzed nucleosome positioning, H3K27 acetylation, transcription, and gastrulation rates in zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that the bulk transcriptional onset does not require Sox19b and Pou5f3, but is sensitive to their balance. Pou5f3 docks H3K27ac on the enhancers of genes involved in gastrulation and ventral fate specification. Sox19b facilitates Pou5f3 access to one-third of these enhancers. The genes regulating mesendodermal and dorsal fates are primed for activation independently on Pou5f3 and Sox19b. Strikingly, the loss of either factor results in activation of silent enhancers; simultaneous loss of both leads to premature expression of differentiation genes. Our results uncover how independent activities of maternal Pou5f3 and Sox19b add up or antagonize to determine the early gene expression repertoire.


2019 ◽  
Vol 7 (6) ◽  
pp. 153 ◽  
Author(s):  
Suvi Korhonen ◽  
Kati Hokynar ◽  
Laura Mannonen ◽  
Jorma Paavonen ◽  
Eija Hiltunen-Back ◽  
...  

The transcriptional gene expression patterns of Chlamydia trachomatis have mainly been studied using reference strains propagated in cultured cells. Here, using five low-passage-number C. trachomatis clinical isolates that originated from asymptomatic or symptomatic female patients, the in vitro expression of the ompA, cpaf, tarp, and tox genes was studied with reverse transcriptase real-time PCR during the chlamydial developmental cycle. We observed dissimilarities in the gene expression patterns between the low-passage-number clinical isolates and the reference strains. The expression of ompA and the peak of the tox expression were observed earlier in the reference strains than in most of the clinical isolates. The expression of cpaf was high in the reference strains compared with the clinical isolates at the mid-phase (6–24 hours post infection) of the developmental cycle. All of the strains had a rather similar tarp expression profile. Four out of five clinical isolates exhibited slower growth kinetics compared with the reference strains. The use of low-passage-number C. trachomatis clinical isolates instead of reference strains in the studies might better reflect the situation in human infection.


2012 ◽  
Vol 78 (7) ◽  
pp. 2100-2105 ◽  
Author(s):  
Dorthe Kixmüller ◽  
Jörg-Christian Greie

ABSTRACTGradually inducible expression vectors which are governed by variations of growth conditions are powerful tools for gene expression of conditionally lethal mutants. Furthermore, controlled expression allows monitoring of overproduction of proteins at various stages in their expressing hosts. ForHalobacterium salinarum, which is often used as a paradigm for halophilic archaea, such an inducible expression system is not available to date. Here we show that thekdppromoter (Pkdp), which facilitates gene expression upon K+limitation, can be used to establish such a system for molecular applications. Pkdpfeatures a rather high expression rate, with an approximately 50-fold increase that can be easily varied by K+concentrations in the growth medium. Besides the construction of an expression vector, our work describes the characterization of expression patterns and, thus, offers a gradually inducible expression system to the scientific community.


2020 ◽  
Vol 202 (14) ◽  
Author(s):  
Ryan R. Chaparian ◽  
Alyssa S. Ball ◽  
Julia C. van Kessel

ABSTRACT In vibrios, quorum sensing controls hundreds of genes that are required for cell density-specific behaviors including bioluminescence, biofilm formation, competence, secretion, and swarming motility. The central transcription factor in the quorum-sensing pathway is LuxR/HapR, which directly regulates ∼100 genes in the >400-gene regulon of Vibrio harveyi. Among these directly controlled genes are 15 transcription factors, which we predicted would comprise the second tier in the hierarchy of the LuxR regulon. We confirmed that LuxR binds to the promoters of these genes in vitro and quantified the extent of LuxR activation or repression of transcript levels. Transcriptome sequencing (RNA-seq) indicates that most of these transcriptional regulators control only a few genes, with the exception of MetJ, which is a global regulator. The genes regulated by these transcription factors are predicted to be involved in methionine and thiamine biosynthesis, membrane stability, RNA processing, c-di-GMP degradation, sugar transport, and other cellular processes. These data support a hierarchical model in which LuxR directly regulates 15 transcription factors that drive the second level of the gene expression cascade to influence cell density-dependent metabolic states and behaviors in V. harveyi. IMPORTANCE Quorum sensing is important for survival of bacteria in nature and influences the actions of bacterial groups. In the relatively few studied examples of quorum-sensing-controlled genes, these genes are associated with competition or cooperation in complex microbial communities and/or virulence in a host. However, quorum sensing in vibrios controls the expression of hundreds of genes, and their functions are mostly unknown or uncharacterized. In this study, we identify the regulators of the second tier of gene expression in the quorum-sensing system of the aquaculture pathogen Vibrio harveyi. Our identification of regulatory networks and metabolic pathways controlled by quorum sensing can be extended and compared to other Vibrio species to understand the physiology, ecology, and pathogenesis of these organisms.


Open Biology ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 200121
Author(s):  
Leila Jahangiri ◽  
Loukia Tsaprouni ◽  
Ricky M. Trigg ◽  
John A. Williams ◽  
Georgios V. Gkoutos ◽  
...  

Gene expression programmes driving cell identity are established by tightly regulated transcription factors that auto- and cross-regulate in a feed-forward manner, forming core regulatory circuitries (CRCs). CRC transcription factors create and engage super-enhancers by recruiting acetylation writers depositing permissive H3K27ac chromatin marks. These super-enhancers are largely associated with BET proteins, including BRD4, that influence higher-order chromatin structure. The orchestration of these events triggers accessibility of RNA polymerase machinery and the imposition of lineage-specific gene expression. In cancers, CRCs drive cell identity by superimposing developmental programmes on a background of genetic alterations. Further, the establishment and maintenance of oncogenic states are reliant on CRCs that drive factors involved in tumour development. Hence, the molecular dissection of CRC components driving cell identity and cancer state can contribute to elucidating mechanisms of diversion from pre-determined developmental programmes and highlight cancer dependencies. These insights can provide valuable opportunities for identifying and re-purposing drug targets. In this article, we review the current understanding of CRCs across solid and liquid malignancies and avenues of investigation for drug development efforts. We also review techniques used to understand CRCs and elaborate the indication of discussed CRC transcription factors in the wider context of cancer CRC models.


Sign in / Sign up

Export Citation Format

Share Document