scholarly journals Growth Deficiencies of Neisseria meningitidis pfs and luxS Mutants Are Not Due to Inactivation of Quorum Sensing

2008 ◽  
Vol 191 (4) ◽  
pp. 1293-1302 ◽  
Author(s):  
Karin Heurlier ◽  
Agnès Vendeville ◽  
Nigel Halliday ◽  
Andrew Green ◽  
Klaus Winzer ◽  
...  

ABSTRACT The activated methyl cycle (AMC) is a central metabolic pathway used to generate (and recycle) several important metabolites and enable methylation. Pfs and LuxS are considered integral components of this pathway because they convert S-adenosylhomocysteine (SAH) to S-ribosylhomocysteine (SRH) and S-ribosylhomocysteine to homocysteine (HCY), respectively. The latter reaction has a second function since it also generates the precursor of the quorum-sensing molecule autoinducer 2 (AI-2). By demonstrating that there was a complete lack of AI-2 production in pfs mutants of the causative agent of meningitis and septicemia, Neisseria meningitidis, we showed that the Pfs reaction is the sole intracellular source of the AI-2 signal. Analysis of lacZ reporters and real-time PCR experiments indicated that pfs is expressed constitutively from a promoter immediately upstream, and careful study of the pfs mutants revealed a growth defect that could not be attributed to a lack of AI-2. Metabolite profiling of the wild type and of a pfs mutant under various growth conditions revealed changes in the concentrations of several AMC metabolites, particularly SRH and SAH and under some conditions also HCY. Similar studies established that an N. meningitidis luxS mutant also has metabolite pool changes and growth defects in line with the function of LuxS downstream of Pfs in the AMC. Thus, the observed growth defect of N. meningitidis pfs and luxS mutants is not due to quorum sensing but is probably due to metabolic imbalance and, in the case of pfs inactivation, is most likely due to toxic accumulation of SAH.

2007 ◽  
Vol 189 (17) ◽  
pp. 6109-6117 ◽  
Author(s):  
Bethany A. Rader ◽  
Shawn R. Campagna ◽  
Martin F. Semmelhack ◽  
Bonnie L. Bassler ◽  
Karen Guillemin

ABSTRACT The genome of the gastric pathogen Helicobacter pylori contains a homologue of the gene luxS, which has been shown to be responsible for production of the quorum-sensing signal autoinducer 2 (AI-2). We report here that deletion of the luxS gene in strain G27 resulted in decreased motility on soft agar plates, a defect that was complemented by a wild-type copy of the luxS gene and by the addition of cell-free supernatant containing AI-2. The flagella of the luxS mutant appeared normal; however, in genetic backgrounds lacking any of three flagellar regulators—the two-component sensor kinase flgS, the sigma factor σ28 (also called fliA), and the anti-sigma factor flgM—loss of luxS altered flagellar morphology. In all cases, the double mutant phenotypes were restored to the luxS + phenotype by the addition of synthetic 4,5-dihydroxy-2,3-pentanedione (DPD), which cyclizes to form AI-2. Furthermore, in all mutant backgrounds loss of luxS caused a decrease in transcript levels of the flagellar regulator flhA. Addition of DPD to luxS cells induced flhA transcription in a dose-dependent manner. Deletion of flhA in a wild-type or luxS mutant background resulted in identical loss of motility, flagella, and flagellar gene expression. These data demonstrate that AI-2 functions as a secreted signaling molecule upstream of FlhA and plays a critical role in global regulation of flagellar gene transcription in H. pylori.


2003 ◽  
Vol 71 (5) ◽  
pp. 2892-2896 ◽  
Author(s):  
Anette Hübner ◽  
Andrew T. Revel ◽  
Dena M. Nolen ◽  
Kayla E. Hagman ◽  
Michael V. Norgard

ABSTRACT The luxS gene product is an integral component of LuxS/autoinducer-2 (AI-2) quorum-sensing systems in bacteria. A putative luxS gene was expressed at comparable levels by Borrelia burgdorferi strain 297 cultivated either in vitro or in dialysis membrane chambers implanted in rat peritoneal cavities. Although the borrelial luxS gene functionally complemented a LuxS deficiency in Escherichia coli DH5α, AI-2-like activity could not be detected within B. burgdorferi culture supernatants or concentrated cell lysates. Finally, a luxS-deficient mutant of B. burgdorferi was infectious at wild-type levels when it was intradermally needle inoculated into mice, indicating that expression of luxS probably is not required for infectivity but, at the very least, is not essential for mammalian host adaptation. Our findings also challenge the notion that a LuxS/AI-2 quorum-sensing system is operative in B. burgdorferi.


2012 ◽  
Vol 61 (4) ◽  
pp. 263-271 ◽  
Author(s):  
MIN ZHANG ◽  
LI SUN

Edwardsiella ictaluri is a Gram-negative bacterium and the causative agent of enteric septicemia of catfish. In this study, we examined the expression and function of the LuxS from a pathogenic E. ictaluri strain, 1901. J901 was found to produce autoinducer 2 (AI-2) activity that maximized at mid-logarithmic phase and was enhanced by glucose and repressed by high temperature. Consistently, a luxS gene (luxSEi) was identified in J901, whose expression was regulated by cell density, glucose, and temperature in a manner similar to that observed with AI-2 activity. Further analysis showed that LuxSEi is a biologically active AI-2 synthase that was able to complement the luxS-defective phenotype of Escherichia coli DH5alpha. To examine the functional importance of LuxSEi, a genetically modified variant of J901, J901Ri, was constructed, in which luxSEi, expression was blocked by RNA interference. Compared to the wild type, J901Ri was (i) reduced in AI-2 activity to a level of 59% of that of the wild type; (ii) impaired in both planktonic and biofilm growth; (iii) significantly attenuated in the ability to infect cultured fish cells and to cause mortality in infected fish; (iv) unable to induce the expression of certain virulence-associated genes. Addition of exogenous AI-2 failed to rescue the growth defect of J901Ri as free-living cells but restored biofilm production and the expression of virulence genes to levels comparable to those of the wild type. Taken together, these results indicate that LuxSEi is a functional AI-2 synthase that is required for optimal cellular growth and host infection.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1859-1869 ◽  
Author(s):  
Joanne E. Dove ◽  
Kazutoyo Yasukawa ◽  
Colin R. Tinsley ◽  
Xavier Nassif

Neisseria meningitidis is a Gram-negative bacterium which is an important causative agent of septicaemia and meningitis. LuxS has been shown to be involved in the biosynthesis of a quorum sensing molecule, autoinducer-2 (AI-2), known to play a role in virulence in Escherichia coli, as well as other bacteria. Evidence that serogroup B of N. meningitidis produces AI-2, along with the observation that a luxS mutant of this strain had attenuated virulence in an infant rat model of bacteraemia, led to further investigation of the role of this quorum sensing molecule in N. meningitidis. In this study, it is demonstrated that AI-2 is not involved in regulating growth of meningococci, either in culture or in contact with epithelial cells. Furthermore, transcriptional profiling using DNA microarrays shows an absence of the concerted regulation seen in other bacteria. Taken together, these data suggest that in N. meningitidis, AI-2 may be a metabolic by-product and not a cell-to-cell signalling molecule.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Ming-Shi Li ◽  
Paul R. Langford ◽  
J. Simon Kroll

ABSTRACT Neisseria meningitidis is a commensal microbe that colonizes the human nasopharynx but occasionally invades the bloodstream to cause life-threatening infection. N. meningitidis MC58 NMB0419 encodes a Sel1-like repeat (SLR)-containing protein, previously implicated in invasion of epithelial cells. A gene-regulatory function was revealed in Escherichia coli expressing plasmid-borne NMB0419 and showing significantly increased epithelial adherence compared to the wild type, due to increased expression of mannose-sensitive type 1 pili. While a meningococcal NMB0419 mutant did not have altered epithelial adherence, in a transcriptome-wide comparison of the wild type and an NMB0419 mutant, a large proportion of genes differentially regulated in the mutant were involved in iron acquisition and metabolism. Fifty-one percent and 38% of genes, respectively, up- and downregulated in the NMB0419 mutant had previously been identified as being induced and repressed by meningococcal Fur. An in vitro growth defect of the NMB0419 mutant under iron restriction was consistent with the downregulation of tbpAB and hmbR, while an intraepithelial replication defect was consistent with the downregulation of tonB, exbB, and exbD, based on a known phenotype of a meningococcal tonB mutant. Disruption of the N-terminal NMB0419 signal peptide, predicted to export the protein beyond the cytoplasmic membrane, resulted in loss of functional traits in N. meningitidis and E. coli. Our study indicates that the expression of NMB0419 is associated with transcriptional changes counterbalancing the regulatory function of Fur, offering a new perspective on regulatory mechanisms involved in meningococcal interaction with epithelial cells, and suggests new insights into the roles of SLR-containing genes in other bacteria.


2013 ◽  
Vol 289 (3) ◽  
pp. 1662-1674 ◽  
Author(s):  
Sahar Hasim ◽  
Nur Ahmad Hussin ◽  
Fadhel Alomar ◽  
Keshore R. Bidasee ◽  
Kenneth W. Nickerson ◽  
...  

Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys136-His137-Glu168. Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mm and kcat = 7.8 s−1) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.


Microbiology ◽  
2011 ◽  
Vol 157 (9) ◽  
pp. 2445-2455 ◽  
Author(s):  
Bethany A. Rader ◽  
Christopher Wreden ◽  
Kevin G. Hicks ◽  
Emily Goers Sweeney ◽  
Karen M. Ottemann ◽  
...  

Helicobacter pylori moves in response to environmental chemical cues using a chemotaxis two-component signal-transduction system. Autoinducer-2 (AI-2) is a quorum-sensing signal produced by the LuxS protein that accumulates in the bacterial environment in a density-dependent manner. We showed previously that a H. pylori luxS mutant was defective in motility on soft agar plates. Here we report that deletion of the luxS gene resulted in swimming behaviour with a reduced frequency of stops as compared to the wild-type strain. Stopping frequency was restored to wild-type levels by genetic complementation of the luxS mutation or by addition of synthetic 4,5-dihydroxy-2,3-pentanedione (DPD), which cyclizes to form AI-2. Synthetic DPD also increased the frequency of stops in wild-type H. pylori, similar to the behaviour induced by the known chemorepellent HCl. We found that whereas mutants lacking the chemoreceptor genes tlpA, tlpC or tlpD responded to an exogenous source of synthetic DPD, the chemoreceptor mutant tlpB was non-responsive to a gradient or uniform distribution of the chemical. Furthermore, a double mutant lacking both tlpB and luxS exhibited chemotactic behaviour similar to the tlpB single mutant, whereas a double mutant lacking both tlpB and the chemotransduction gene cheA behaved like a nonchemotactic cheA single mutant, supporting the model that tlpB functions in a signalling pathway downstream of luxS and upstream of cheA. We conclude that H. pylori perceives LuxS-produced AI-2 as a chemorepellent via the chemoreceptor TlpB.


1989 ◽  
Vol 9 (6) ◽  
pp. 2715-2723
Author(s):  
M D Baroni ◽  
E Martegani ◽  
P Monti ◽  
L Alberghina

A detailed kinetic analysis of the cell cycle of cdc25-1, RAS2Val-19, or cdc25-1/RAS2Val-19 mutants during exponential growth is presented. At the permissive temperature (24 degrees C), cdc25-1 cells show a longer G1/unbudded phase of the cell cycle and have a smaller critical cell size required for budding without changing the growth rate in comparison to an isogenic wild type. The RAS2Val-19 mutation efficiently suppresses the ts growth defect of the cdc25-1 mutant at 36 degrees C and the increase of G1 phase at 24 degrees C. Moreover, it causes a marked increase of the critical cell mass required to enter into a new cell division cycle compared with that of the wild type. Since the critical cell mass is physiologically modulated by nutritional conditions, we have also studied the behavior of these mutants in different media. The increase in cell size caused by the RAS2Val-19 mutation is evident in all tested growth conditions, while the effect of cdc25-1 is apparently more pronounced in rich culture media. CDC25 and RAS2 gene products have been showed to control cell growth by regulating the cyclic AMP metabolic pathway. Experimental evidence reported herein suggests that the modulation of the critical cell size by CDC25 and RAS2 may involve adenylate cyclase.


Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1349-1358 ◽  
Author(s):  
Eun-Sil Choi ◽  
Hea-Jong Chung ◽  
Myoung-Ju Kim ◽  
Seung-Moon Park ◽  
Byeong-Jin Cha ◽  
...  

The Cryphonectria parasitica gene cpmk2, which encodes a mitogen-activated protein kinase belonging to the yeast extracellular signalling-regulated kinase (YERK1) subfamily, was isolated and its biological function was examined. Disruption of cpmk2 resulted in impaired pigmentation and abolished conidiation. Growth defects were observed in the cpmk2 mutant grown on solid plates, but growth of the mutant appeared normal in liquid media, including EP complete and PD broth, suggesting that the cpmk2 gene is involved in sensing and responding to growth conditions. The mutant's production of laccase, as measured by the size of the coloured area produced on tannic-acid-supplemented plates, was significantly reduced compared with the wild-type, but the intensity of the coloured area was unchanged, suggesting that the reduced laccase activity was owing to reduced growth on solid media rather than transcriptional downregulation. A dramatic reduction observed in the canker area produced by the cpmk2 mutant compared with the wild-type, even more severe than that of a hypovirulent strain, can also be ascribed to defective growth on solid surfaces rather than to impairments in a virulence factor(s). Downregulation of the pheromone gene Mf2/1 was also observed in the mutant, indicating a possible explanation for the regulation of the pheromone precursor gene in filamentous fungi and suggesting the presence of the yeast-like pheromone-responsive pathway in C. parasitica. Immunoblot analyses revealed that the phosphorylation level of CpMK2 increased in both virus-free and virus-containing strains in liquid cultures of up to 5 days old and decreased in older cultures. Moreover, the CpMK2 phosphorylation level increased in both strains after transfer from liquid to solid medium. However, levels of phosphorylated CpMK2 were similar in the two strains, suggesting that CpMK2, unlike CpMK1, is not under the direct control of a hypovirus.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Leanid Laganenka ◽  
Remy Colin ◽  
Victor Sourjik

Abstract Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour—autoaggregation—of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell–cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document