scholarly journals Coordinated Regulation ofgnd, Which Encodes 6-Phosphogluconate Dehydrogenase, by the Two Transcriptional Regulators GntR1 and RamA in Corynebacterium glutamicum

2012 ◽  
Vol 194 (23) ◽  
pp. 6527-6536 ◽  
Author(s):  
Yuya Tanaka ◽  
Shigeki Ehira ◽  
Haruhiko Teramoto ◽  
Masayuki Inui ◽  
Hideaki Yukawa

ABSTRACTThe transcriptional regulation ofCorynebacterium glutamicum gnd, encoding 6-phosphogluconate dehydrogenase, was investigated. Two transcriptional regulators, GntR1 and RamA, were isolated by affinity purification usinggndpromoter DNA. GntR1 was previously identified as a repressor of gluconate utilization genes, includinggnd. Involvement of RamA ingndexpression had not been investigated to date. The level ofgndmRNA was barely affected by the single deletion oframA. However,gndexpression was downregulated in theramA gntR1double mutant compared to that of thegntR1single mutant, suggesting that RamA activatesgndexpression. Two RamA binding sites are found in the 5′ upstream region ofgnd. Mutation proximal to the transcriptional start site diminished the gluconate-dependent induction ofgnd-lacZ. DNase I footprinting assay revealed two GntR1 binding sites, with one corresponding to a previously proposed site that overlaps with the −10 region. The other site overlaps the RamA binding site. GntR1 binding to this newly identified site inhibits DNA binding of RamA. Therefore, it is likely that GntR1 repressesgndexpression by preventing both RNA polymerase and RamA binding to the promoter. In addition, DNA binding activity of RamA was reduced by high concentrations of NAD(P)H but not by NAD(P), implying that RamA senses the redox perturbation of the cell.

2018 ◽  
Vol 39 (3) ◽  
Author(s):  
Kyle T. Helzer ◽  
Mary Szatkowski Ozers ◽  
Mark B. Meyer ◽  
Nancy A. Benkusky ◽  
Natalia Solodin ◽  
...  

ABSTRACT Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.


2014 ◽  
Vol 82 (5) ◽  
pp. 1994-2005 ◽  
Author(s):  
Ying-Ying Wu ◽  
Ching-Mei Hsu ◽  
Pei-Hsuan Chen ◽  
Chang-Phone Fung ◽  
Lee-Wei Chen

ABSTRACTPrior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of deadEscherichia coliorStaphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the familyEnterobacteriaceaeand the genusEnterococcusas well as organisms of the anaerobic generaLactococcusandBifidobacteriumin the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increasedKlebsiella pneumoniaetranslocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreasedK. pneumoniaetranslocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment.


Author(s):  
Takahiro Sawada ◽  
Koichi Nishimura ◽  
Jinichi Mori ◽  
Yoshiaki Kanemoto ◽  
Alexander Kouzmenko ◽  
...  

Abstract Androgen induces the binding of its receptor (AR) to androgen-responsive elements (AREs), while genome-wide studies showed that most androgen-induced AR binding sites on chromatin were unrelated to AREs. Enhancer RNAs (eRNAs), a class of non-coding RNAs(ncRNAs), are transcribed from super-enhancers (SEs), and trigger the formation of large ribonucleoprotein (RNP) condensates of transcription factors. By in silico search, an SE is found to be located on the locus of KLK3 that encodes prostate specific antigen (PSA). On the KLK3 SE, androgen-induced expression of ncRNAs was detected and designated as KLK3eRNAs in LNCaP cells, and androgen-induced association of AR and FOXA1 on the KLK3eRNA coding regions was detected. Such androgen-induced association of an AR mutant lacking DNA binding activity on the KLK3eRNA coding regions was undetectable on an exogenous ARE. Thus, the present findings suggest a molecular basis of androgen-induced association of AR with chromatin on ARE-unrelated sequences.


2020 ◽  
Vol 202 (15) ◽  
Author(s):  
Patrícia T. dos Santos ◽  
Rikke S. S. Thomasen ◽  
Mathias S. Green ◽  
Nils J. Færgeman ◽  
Birgitte H. Kallipolitis

ABSTRACT Naturally occurring free fatty acids (FFAs) are recognized as potent antimicrobial agents that also affect the production of virulence factors in bacterial pathogens. In the foodborne pathogen Listeria monocytogenes, some medium- and long-chain FFAs act as antimicrobial agents as well as signaling compounds, causing a repression of transcription of virulence genes. We previously observed that the master virulence regulator PrfA is involved in both the antimicrobial and virulence-inhibitory response of L. monocytogenes to selected FFAs, but the underlying mechanisms are presently unknown. Here, we present a systematic analysis of the antimicrobial and PrfA-inhibitory activities of medium- and long-chain FFAs of various carbon chain lengths and degrees of saturation. We observed that exposure to specific antimicrobial and nonantimicrobial FFAs prevented PrfA-dependent activation of virulence gene transcription and reduced the levels of PrfA-regulated virulence factors. Thus, an antimicrobial activity was not compulsory for the PrfA-inhibitory ability of an FFA. In vitro binding experiments revealed that PrfA-inhibitory FFAs were also able to prevent the constitutively active variant PrfA* from binding to the PrfA box in the promoter region of the virulence gene hly, whereas noninhibitory FFAs did not affect its ability to bind DNA. Notably, the unsaturated FFAs inhibited the DNA binding activity of PrfA* most efficiently. Altogether, our findings support a model in which specific FFAs orchestrate a generalized reduction of the virulence potential of L. monocytogenes by directly targeting the key virulence regulator PrfA. IMPORTANCE Listeria monocytogenes is a Gram-positive pathogen able to cause foodborne infections in humans and animals. Key virulence genes in L. monocytogenes are activated by the transcription regulator PrfA, a DNA binding protein belonging to the CRP/FNR family. Various signals from the environment are known to affect the activity of PrfA, either positively or negatively. Recently, we found that specific medium- and long-chain free fatty acids act as antimicrobial agents as well as signaling compounds in L. monocytogenes. Here, we show that both antimicrobial and nonantimicrobial free fatty acids inhibit PrfA-dependent activation of virulence gene transcription by interfering with the DNA binding activity of PrfA. Our findings suggest that free fatty acids could be candidates for alternative therapies against L. monocytogenes.


2015 ◽  
Vol 197 (24) ◽  
pp. 3788-3796 ◽  
Author(s):  
Takayuki Kuge ◽  
Haruhiko Teramoto ◽  
Masayuki Inui

ABSTRACTInCorynebacterium glutamicumATCC 31831, a LacI-type transcriptional regulator AraR, represses the expression ofl-arabinose catabolism (araBDA), uptake (araE), and the regulator (araR) genes clustered on the chromosome. AraR binds to three sites: one (BSB) between the divergent operons (araBDAandgalM-araR) and two (BSE1and BSE2) upstream ofaraE.l-Arabinose acts as an inducer of the AraR-mediated regulation. Here, we examined the roles of these AraR-binding sites in the expression of the AraR regulon. BSBmutation resulted in derepression of botharaBDAandgalM-araRoperons. The effects of BSE1and/or BSE2mutation onaraEexpression revealed that the two sites independently function as theciselements, but BSE1plays the primary role. However, AraR was shown to bind to these sites with almost the same affinityin vitro. Taken together, the expression ofaraBDAandaraEis strongly repressed by binding of AraR to a single site immediately downstream of the respective transcriptional start sites, whereas the binding site overlapping the −10 or −35 region of thegalM-araRandaraEpromoters is less effective in repression. Furthermore, downregulation ofaraBDAandaraEdependent onl-arabinose catabolism observed in the BSBmutant and the AraR-independentaraRpromoter identified withingalM-araRadd complexity to regulation of the AraR regulon derepressed byl-arabinose.IMPORTANCECorynebacterium glutamicumhas a long history as an industrial workhorse for large-scale production of amino acids. An important aspect of industrial microorganisms is the utilization of the broad range of sugars for cell growth and production process. MostC. glutamicumstrains are unable to use a pentose sugarl-arabinose as a carbon source. However, genes forl-arabinose utilization and its regulation have been recently identified inC. glutamicumATCC 31831. This study elucidates the roles of the multiple binding sites of the transcriptional repressor AraR in the derepression byl-arabinose and thereby highlights the complex regulatory feedback loops in combination withl-arabinose catabolism-dependent repression of the AraR regulon in an AraR-independent manner.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Peng Wang ◽  
Zhuoteng Yu ◽  
Thomas J. Santangelo ◽  
John Olesik ◽  
Yufeng Wang ◽  
...  

ABSTRACT The ferric uptake regulator (Fur) family of DNA-binding proteins represses and/or activates gene transcription via divalent metal ion-dependent signal sensing. The Borrelia burgdorferi Fur homologue, also known as Borrelia oxidative stress regulator (BosR), promotes spirochetal adaptation to the mammalian host by directly repressing the lipoproteins required for tick colonization and indirectly activating those required for establishing infection in the mammal. Here, we examined whether the DNA-binding activity of BosR was regulated by any of the four most prevalent transition metal ions in B. burgdorferi, Mn, Fe, Cu, and Zn. Our data indicated that in addition to a structural site occupied by Zn(II), BosR had two regulatory sites that could be occupied by Zn(II), Fe(II), or Cu(II) but not by Mn(II). While Fe(II) had no effect, Cu(II) and Zn(II) had a dose-dependent inhibitory effect on the BosR DNA-binding activity. Competition experiments indicated that Cu(II) had a higher affinity for BosR than Zn(II) or Fe(II). A BosR deficiency in B. burgdorferi resulted in a significant increase in the Cu level but no significant change in the levels of Mn, Fe, or Zn. These data suggest that Cu regulates BosR activity, and BosR in turn regulates Cu homeostasis in B. burgdorferi. While this regulatory paradigm is characteristic of the Fur family, BosR is the first one shown to be responsive to Cu(II), which may be an adaptation to the potentially high level of Cu present in the Lyme disease spirochete. IMPORTANCE Transition metal ions serve an essential role in the metabolism of all living organisms. Members of the ferric uptake regulator (Fur) family play critical roles in regulating the cellular homeostasis of transition metals in diverse bacteria, and their DNA-binding activity is often regulated by coordination of the cognate divalent metal ions. To date, regulators with metal ion specificity to Fe(II), Mn(II), Zn(II), and Ni(II) have all been described. In this study, we demonstrate that BosR, the sole Fur homologue in Borrelia burgdorferi, is responsive to Cu(II) and regulates Cu homeostasis in this bacterium, which may be an adaption to potentially Cu-rich milieu in the Lyme disease spirochete. This study has expanded the repertoire of the Fur family's metal ion specificity.


2011 ◽  
Vol 79 (11) ◽  
pp. 4370-4381 ◽  
Author(s):  
Bing Zhu ◽  
Jeeba A. Kuriakose ◽  
Tian Luo ◽  
Efren Ballesteros ◽  
Sharu Gupta ◽  
...  

ABSTRACTEhrlichia chaffeensisis an obligately intracellular bacterium that modulates host cell gene transcription in the mononuclear phagocyte, but the host gene targets and mechanisms involved in transcriptional modulation are not well-defined. In this study, we identified a novel tandem repeat DNA-binding domain in theE. chaffeensis120-kDa tandem repeat protein (TRP120) that directly binds host cell DNA. TRP120 was observed by immunofluorescent microscopy in the nucleus ofE. chaffeensis-infected host cells and was detected in nuclear extracts by Western immunoblotting with TRP120-specific antibody. The TRP120 binding sites and associated host cell target genes were identified using high-throughput deep sequencing (Illumina) of immunoprecipitated DNA (chromatin immunoprecipitation and high-throughput DNA sequencing). Multiple em motif elicitation (MEME) analysis of the most highly enriched TRP120-bound sequences revealed a G+C-rich DNA motif, and recombinant TRP120 specifically bound synthetic oligonucleotides containing the motif. TRP120 target gene binding sites were mapped most frequently to intersecting regions (intron/exon; 49%) but were also identified in upstream regulatory regions (25%) and downstream locations (26%). Genes targeted by TRP120 were most frequently associated with transcriptional regulation, signal transduction, and apoptosis. TRP120 targeted inflammatory chemokine genes, CCL2, CCL20, and CXCL11, which were strongly upregulated duringE. chaffeensisinfection and were also upregulated by direct transfection with recombinant TRP120. This study reveals that TRP120 is a novel DNA-binding protein that is involved in a host gene transcriptional regulation strategy.


2016 ◽  
Vol 199 (1) ◽  
Author(s):  
Qinli Yu ◽  
Hanlin Cai ◽  
Yanfeng Zhang ◽  
Yongzhi He ◽  
Lincai Chen ◽  
...  

ABSTRACT Ectoine has osmoprotective effects on Sinorhizobium meliloti that differ from its effects in other bacteria. Ectoine does not accumulate in S. meliloti cells; instead, it is degraded. The products of the ehuABCD-eutABCDE operon were previously discovered to be responsible for the uptake and catabolism of ectoine in S. meliloti. However, the mechanism by which ectoine is involved in the regulation of the ehuABCD-eutABCDE operon remains unclear. The ehuR gene, which is upstream of and oriented in the same direction as the ehuABCD-eutABCDE operon, encodes a member of the MocR/GntR family of transcriptional regulators. Quantitative reverse transcription-PCR and promoter-lacZ reporter fusion experiments revealed that EhuR represses transcription of the ehuABCD-eutABCDE operon, but this repression is inhibited in the presence of ectoine. Electrophoretic mobility shift assays and DNase I footprinting assays revealed that EhuR bound specifically to the DNA regions overlapping the −35 region of the ehuA promoter and the +1 region of the ehuR promoter. Surface plasmon resonance assays further demonstrated direct interactions between EhuR and the two promoters, although EhuR was found to have higher affinity for the ehuA promoter than for the ehuR promoter. In vitro, DNA binding by EhuR could be directly inhibited by a degradation product of ectoine. Our work demonstrates that EhuR is an important negative transcriptional regulator involved in the regulation of ectoine uptake and catabolism and is likely regulated by one or more end products of ectoine catabolism. IMPORTANCE Sinorhizobium meliloti is an important soil bacterium that displays symbiotic interactions with legume hosts. Ectoine serves as a key osmoprotectant for S. meliloti. However, ectoine does not accumulate in the cells; rather, it is degraded. In this study, we characterized the transcriptional regulation of the operon responsible for ectoine uptake and catabolism in S. meliloti. We identified and characterized the transcription repressor EhuR, which is the first MocR/GntR family member found to be involved in the regulation of compatible solute uptake and catabolism. More importantly, we demonstrated for the first time that an ectoine catabolic end product could modulate EhuR DNA-binding activity. Therefore, this work provides new insights into the unique mechanism of ectoine-induced osmoprotection in S. meliloti.


1988 ◽  
Vol 8 (2) ◽  
pp. 615-623 ◽  
Author(s):  
A Mansukhani ◽  
A Crickmore ◽  
P W Sherwood ◽  
M L Goldberg

The ability of the zeste moiety of beta-galactosidase-zeste fusion proteins synthesized in Escherichia coli to bind specific DNA sequences was examined. Such fusion proteins recognize a region of the white locus upstream of the start of transcription; this region has previously been shown to be required for genetic interaction between the zeste and white loci. Another strong binding site was localized to a region between 50 and 205 nucleotides before the start of the Ubx transcriptional unit; expression of the bithorax complex is also known to be influenced by the zeste locus. Weaker binding sites were also seen in the vicinity of the bxd and Sgs-4 genes, but it is currently unclear whether these binding sites play a role in transvection effects. The DNA-binding activity of the zeste protein is restricted to a domain of approximately 90 amino acids near the N terminus. This domain does not appear to contain homeobox or zinc finger motifs found in other DNA-binding proteins. The DNA-binding domain is not disrupted by any currently characterized zeste mutations.


Microbiology ◽  
2020 ◽  
Author(s):  
Ken-ichi Yoshida ◽  
Yusuke Shirae ◽  
Ryo Nishimura ◽  
Kaho Fukui ◽  
Shu Ishikawa

Geobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, feeds on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis . The iol gene cluster of G. kaustophilus comprises two tandem operons induced in the presence of inositol; however, the mechanism underlying this induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding scyllo-inositol dehydrogenase, and its homologue in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and was termed iolQ in G. kaustophilus . When iolQ was inactivated in G. kaustophilus , not only cellular myo-inositol dehydrogenase activity due to gk1899 expression but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal histidine (His)-tagged fusion protein in Escherichia coli and subjected to an in vitro gel electrophoresis mobility shift assay to examine its DNA-binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions and that DNA binding was antagonized by myo-inositol. Moreover, DNase I footprinting analyses identified two tandem binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to form a palindrome of 5′-RGWAAGCGCTTSCY-3′ (where R=A or G, W=A or T, S=G or C, and Y=C or T). IolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.


Sign in / Sign up

Export Citation Format

Share Document