scholarly journals Extragenic Suppressors of Growth Defects inmsbB Salmonella

2001 ◽  
Vol 183 (19) ◽  
pp. 5554-5561 ◽  
Author(s):  
Sean R. Murray ◽  
David Bermudes ◽  
Karim Suwwan de Felipe ◽  
K. Brooks Low

ABSTRACT Lipid A, a potent endotoxin which can cause septic shock, anchors lipopolysaccharide (LPS) into the outer leaflet of the outer membrane of gram-negative bacteria. MsbB acylates (KDO)2-(lauroyl)-lipid IV-A with myristate during lipid A biosynthesis. Reports of knockouts of the msbB gene describe effects on virulence but describe no evidence of growth defects in Escherichia coli K-12 or Salmonella. Our data confirm the general lack of growth defects in msbB E. coli K-12. In contrast, msbB Salmonella entericaserovar Typhimurium exhibits marked sensitivity to galactose-MacConkey and 6 mM EGTA media. At 37°C in Luria-Bertani (LB) broth, msbB Salmonella cells elongate, form bulges, and grow slowly.msbB Salmonella grow well on LB-no salt (LB-0) agar; however, under specific shaking conditions in LB-0 broth, manymsbB Salmonella cells lyse during exponential growth and a fraction of the cells form filaments. msbB Salmonella grow with a near-wild-type growth rate in MSB (LB-0 containing Mg2+ and Ca2+) broth (23 to 42°C). Extragenic compensatory mutations, which partially suppress the growth defects, spontaneously occur at high frequency, and mutants can be isolated on media selective for faster growing derivatives. One of the suppressor mutations maps at 19.8 centisomes and is a recessive IS10insertional mutation in somA, a gene of unknown function which corresponds to ybjX in E. coli. In addition, random Tn10 mutagenesis carried out in an unsuppressed msbB strain produced a set of Tn10inserts, not in msbB or somA, that correlate with different suppressor phenotypes. Thus, insertional mutations, insomA and other genes, can suppress the msbBphenotype.

2020 ◽  
Author(s):  
Kari A.C. Green ◽  
Branden S.J. Gregorchuk ◽  
Shelby L. Reimer ◽  
Nicola H. Cartwright ◽  
Daniel R. Beniac ◽  
...  

AbstractQuaternary ammonium compounds (QACs) benzalkonium (BZK) and cetrimide (CET) are common disinfectants used to inhibit or eradicate Gram-negative bacteria in clinical and agricultural products. QAC tolerance in Escherichia coli and other Enterobacterales species can confer cross-resistance to various clinically used antibiotics, making it important to understand mechanisms of QAC tolerance in greater depth. QAC adaptation by E. coli is hypothesized to alter MarRAB regulated genes that converge on the outer membrane, specifically, lipid A biosynthesis and transport genes, porins, and efflux pump systems. To test this, we performed a ‘multi’-omics and phenotypic characterization of E. coli K-12 adapted to BZK and CET, to assess how QACs alter cell growth, genomics, and proteomics. E. coli adapted to either BZK and CET resulted in strains with stable QAC tolerance when either drug was omitted, elongated and narrower cell morphologies by scanning electron microscopy, and reduced growth fitness when compared to un-adapted E. coli. Antimicrobial susceptibility testing revealed that QAC adaptation increased E. coli tolerance by ≥4-fold to BZK, CET, and other QACs but no antibiotic cross-resistance. Single nucleotide variants identified by whole genome sequencing and differentially accumulated proteins by liquid chromatography-mass spectrometry identified alterations to various QAC-adapted E. coli genes and proteins belonging to: lipid A biosynthesis and transport (lpxLM, msbA, mla), the mar-sox-rob regulatory pathway (marR, rob), DNA/protein translation (gyrA, rpsA, rpoB, rapA). These alterations validate the hypothesis that mar-sox-rob network plays a role in QAC tolerance and identifies additional stress inducible genetic and protein QAC tolerant biomarkers.ImportanceBacterial tolerance mechanisms associated with disinfectant QAC adaptation is hypothesized to overlap with the mar-sox-rob multiple antimicrobial resistance pathway but has not been directly shown. Here, we generate QAC tolerant E. coli strains and identify phenotypic changes associated with protein and genetic alterations caused by prolonged QAC exposure. We identified genes that overlap with known antibiotic resistance mechanisms as well as distinct genes and proteins specific to QAC adaptation that are useful for future bacterial disinfectant tolerance mechanism studies. However, these altered genes and proteins implicate MarR and Rob pathways specifically in QAC tolerance but, surprisingly, the involvement of mar-sox-rob pathways did not increase antibiotic cross-resistance. Many altered genes we identified were essential genes in lipid A biosynthesis/transport, DNA and RNA transcription, and protein regulation systems potentially explaining why only QAC cross-tolerance was observed and why we observed greater cell fitness costs despite MarR and Rob pathway involvement.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Carlos-Francisco Méndez-Cruz ◽  
Antonio Blanchet ◽  
Alan Godínez ◽  
Ignacio Arroyo-Fernández ◽  
Socorro Gama-Castro ◽  
...  

Abstract Transcription factors (TFs) play a main role in transcriptional regulation of bacteria, as they regulate transcription of the genetic information encoded in DNA. Thus, the curation of the properties of these regulatory proteins is essential for a better understanding of transcriptional regulation. However, traditional manual curation of article collections to compile descriptions of TF properties takes significant time and effort due to the overwhelming amount of biomedical literature, which increases every day. The development of automatic approaches for knowledge extraction to assist curation is therefore critical. Here, we show an effective approach for knowledge extraction to assist curation of summaries describing bacterial TF properties based on an automatic text summarization strategy. We were able to recover automatically a median 77% of the knowledge contained in manual summaries describing properties of 177 TFs of Escherichia coli K-12 by processing 5961 scientific articles. For 71% of the TFs, our approach extracted new knowledge that can be used to expand manual descriptions. Furthermore, as we trained our predictive model with manual summaries of E. coli, we also generated summaries for 185 TFs of Salmonella enterica serovar Typhimurium from 3498 articles. According to the manual curation of 10 of these Salmonella typhimurium summaries, 96% of their sentences contained relevant knowledge. Our results demonstrate the feasibility to assist manual curation to expand manual summaries with new knowledge automatically extracted and to create new summaries of bacteria for which these curation efforts do not exist. Database URL: The automatic summaries of the TFs of E. coli and Salmonella and the automatic summarizer are available in GitHub (https://github.com/laigen-unam/tf-properties-summarizer.git).


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Steven J Sandler ◽  
Hardeep S Samra ◽  
Alvin J Clark

Abstract First identified as an essential component of the ϕX174 in vitro DNA replication system, PriA has ATPase, helicase, translocase, and primosome-assembly activities. priA1::kan strains of Escherichia coli are sensitive to UV irradiation, deficient in homologous recombination following transduction, and filamentous. priA2::kan strains have eightfold higher levels of uninduced SOS expression than wild type. We show that (1) priA1::kan strains have eightfold higher levels of uninduced SOS expression, (2) priA2::kan strains are UVS and Rec−, (3) lexA3 suppresses the high basal levels of SOS expression of a priA2::kan strain, and (4) plasmid-encoded priA300 (K230R), a mutant allele retaining only the primosome-assembly activity of priA+, restores both UVR and Rec+ phenotypes to a priA2::kan strain. Finally, we have isolated 17 independent UVR Rec+ revertants of priA2::kan strains that carry extragenic suppressors. All 17 map in the C-terminal half of the dnaC gene. DnaC loads the DnaB helicase onto DNA as a prelude for primosome assembly and DNA replication. We conclude that priA's primosome-assembly activity is essential for DNA repair and recombination and that the dnaC suppressor mutations allow these processes to occur in the absence of priA.


2006 ◽  
Vol 188 (21) ◽  
pp. 7449-7456 ◽  
Author(s):  
Douglas F. Browning ◽  
David J. Lee ◽  
Alan J. Wolfe ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position −41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position −54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position −74.5. The E. coli acs gene is transcribed from a divergent promoter upstream from the nrf operon promoter. Transcription from the major acsP2 promoter is dependent on the cyclic AMP receptor protein and is modulated by IHF and Fis binding at multiple sites. We show that IHF binding to one of these sites, located at position −127 with respect to the nrf promoter, has a positive effect on nrf promoter activity. This activation is dependent on the face of the DNA helix, independent of IHF binding at other locations, and found only when NarL/NarP are not bound at position −74.5. Binding of NarL/NarP appears to insulate the nrf promoter from the effects of IHF. The acs-nrf regulatory region is conserved in other pathogenic E. coli strains and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.


2003 ◽  
Vol 185 (18) ◽  
pp. 5398-5407 ◽  
Author(s):  
A. P. White ◽  
D. L. Gibson ◽  
S. K. Collinson ◽  
P. A. Banser ◽  
W. W. Kay

ABSTRACT Lipopolysaccharide (LPS) O polysaccharide was identified as the principle factor impeding intercellular formation of intact thin aggregative fimbriae (Tafi) in Salmonella enterica serovar Enteritidis. The extracellular nucleation-precipitation assembly pathway for these organelles was investigated by quantifying fimbrial formation between ΔagfA (AgfA recipient) and ΔagfB (AgfA donor) cells harboring mutations in LPS (galE::Tn10) and/or cellulose (ΔbcsA) synthesis. Intercellular complementation could be detected between ΔagfA and ΔagfB strains only when both possessed the galE mutation. LPS O polysaccharide appears to be an impenetrable barrier to AgfA assembly between cells but not within individual cells. The presence of cellulose did not restrict Tafi formation between cells. Transmission electron microscopy of w + S. enterica serovar Enteritidis 3b cells revealed diffuse Tafi networks without discernible fine structure. In the absence of cellulose, however, individual Tafi fibers were clearly visible, appeared to be occasionally branched, and showed the generally distinctive appearance described for Escherichia coli K-12 curli. A third extracellular matrix component closely associated with cellulose and Tafi was detected on Western blots by using immune serum raised to whole, purified Tafi aggregates. Cellulose was required to tightly link this material to cells. Antigenically similar material was also detected in S. enterica serovar Typhimurium and one diarrheagenic E. coli isolate. Preliminary analysis indicated that this material represented an anionic, extracellular polysaccharide that was distinct from colanic acid. Therefore, Tafi in their native state appear to exist as a complex with cellulose and at least one other component.


Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 657-666 ◽  
Author(s):  
Sang-Hyun Kim ◽  
Wenyi Jia ◽  
Valeria R. Parreira ◽  
Russell E. Bishop ◽  
Carlton L. Gyles

This study shows that lipid A of Escherichia coli O157 : H7 differs from that of E. coli K-12 in that it has a phosphoform at the C-1 position, which is distinctively modified by a phosphoethanolamine (PEtN) moiety, in addition to the diphosphoryl form. The pmrC gene responsible for the addition of PEtN to the lipid A of E. coli O157 : H7 was inactivated and the changes in lipid A profiles were assessed. The pmrC null mutant still produced PEtN-modified lipid A species, albeit in a reduced amount, indicating that PmrC was not the only enzyme that could be used to add PEtN to lipid A. Natural PEtN substitution was shown to be present in the lipid A of other serotypes of enterohaemorrhagic E. coli and absent from the lipid A of E. coli K-12. However, the cloned pmrC O157 gene in a high-copy-number plasmid generated a large amount of PEtN-substituted lipid A species in E. coli K-12. The occurrence of PEtN-substituted lipid A species was associated with a slight increase in the MICs of cationic peptide antibiotics, suggesting that the lipid A modification with PEtN would be beneficial for survival of E. coli O157 : H7 in certain environmental niches. However, PEtN substitution in the lipid A profiles was not detected when putative inner-membrane proteins (YhbX/YbiP/YijP/Ecf3) that show significant similarity with PmrC in amino acid sequence were expressed from high-copy-number plasmids in E. coli K-12. This suggests that these potential homologues are not responsible for the addition of PEtN to lipid A in the pmrC mutant of E. coli O157 : H7. When cells were treated with EDTA, the amount of palmitoylated lipid A from the cells carrying a high-copy-number plasmid clone of pmrC O157 that resulted in significant increase of PEtN substitution was unchanged compared with cells without PEtN substitution, suggesting that the PEtN moiety substituted in lipid A does not compensate for the loss of divalent cations required for bridging neighbouring lipid A molecules.


2005 ◽  
Vol 187 (18) ◽  
pp. 6363-6369 ◽  
Author(s):  
Barbara Woebking ◽  
Galya Reuter ◽  
Richard A. Shilling ◽  
Saroj Velamakanni ◽  
Sanjay Shahi ◽  
...  

ABSTRACT MsbA is an essential ATP-binding cassette half-transporter in the cytoplasmic membrane of the gram-negative Escherichia coli and is required for the export of lipopolysaccharides (LPS) to the outer membrane, most likely by transporting the lipid A core moiety. Consistent with the homology of MsbA to the multidrug transporter LmrA in the gram-positive Lactococcus lactis, our recent work in E. coli suggested that MsbA might interact with multiple drugs. To enable a more detailed analysis of multidrug transport by MsbA in an environment deficient in LPS, we functionally expressed MsbA in L. lactis. MsbA expression conferred an 86-fold increase in resistance to the macrolide erythromycin. A kinetic characterization of MsbA-mediated ethidium and Hoechst 33342 transport revealed apparent single-site kinetics and competitive inhibition of these transport reactions by vinblastine with Ki values of 16 and 11 μM, respectively. We also detected a simple noncompetitive inhibition of Hoechst 33342 transport by free lipid A with a Ki of 57 μM, in a similar range as the Ki for vinblastine, underscoring the relevance of our LPS-less lactococcal model for studies on MsbA-mediated drug transport. These observations demonstrate the ability of heterologously expressed MsbA to interact with free lipid A and multiple drugs in the absence of auxiliary E. coli proteins. Our transport data provide further functional support for direct LPS-MsbA interactions as observed in a recent crystal structure for MsbA from Salmonella enterica serovar Typhimurium (C. L. Reyes and G. Chang, Science 308:1028-1031, 2005).


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Nicolas Kieffer ◽  
Guilhem Royer ◽  
Jean-Winoc Decousser ◽  
Anne-Sophie Bourrel ◽  
Mattia Palmieri ◽  
...  

ABSTRACT The plasmid-located mcr-9 gene, encoding a putative phosphoethanolamine transferase, was identified in a colistin-resistant human fecal Escherichia coli strain belonging to a very rare phylogroup, the D-ST69-O15:H6 clone. This MCR-9 protein shares 33% to 65% identity with the other plasmid-encoded MCR-type enzymes identified (MCR-1 to -8) that have been found as sources of acquired resistance to polymyxins in Enterobacteriaceae. Analysis of the lipopolysaccharide of the MCR-9-producing isolate revealed a function similar to that of MCR-1 by adding a phosphoethanolamine group to lipid A and subsequently modifying the structure of the lipopolysaccharide. However, a minor impact on susceptibility to polymyxins was noticed once the mcr-9 gene was cloned and produced in an E. coli K-12-derived strain. Nevertheless, we showed here that subinhibitory concentrations of colistin induced the expression of the mcr-9 gene, leading to increased MIC levels. This inducible expression was mediated by a two-component regulatory system encoded by the qseC and qseB genes located downstream of mcr-9. Genetic analysis showed that the mcr-9 gene was carried by an IncHI2 plasmid. In silico analysis revealed that the plasmid-encoded MCR-9 shared significant amino acid identity (ca. 80%) with the chromosomally encoded MCR-like proteins from Buttiauxella spp. In particular, Buttiauxella gaviniae was found to harbor a gene encoding MCR-BG, sharing 84% identity with MCR-9. That gene was neither expressed nor inducible in its original host, which was fully susceptible to polymyxins. This work showed that mcr genes may circulate silently and remain undetected unless induced by colistin.


2021 ◽  
Author(s):  
Sebastien Olivier Leclercq ◽  
Maxime Branger ◽  
David GE Smith ◽  
Pierre GERMON

Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings, pathovars as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide component of the outer membrane of E. coli, is linked to the innermost lipid A through the core region of LPS of which 5 different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyze the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types while phylogroups B1, D and E strains were dominated by the R3 type and phylogroups B2 and C strains being dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clone of extra-intestinal pathogenic E. coli(ExPEC) strains. The origin of this uneven distribution is discussed but remains to be explained, as well as the consequences of carrying a specific core type on the physiology of the bacteria.


2010 ◽  
Vol 429 (1) ◽  
pp. 195-203 ◽  
Author(s):  
Paul D. W. Eckford ◽  
Frances J. Sharom

The MsbA protein is an essential ABC (ATP-binding-cassette) superfamily member in Gram-negative bacteria. This 65 kDa membrane protein is thought to function as a homodimeric ATP-dependent lipid translocase or flippase that transports lipid A from the inner to the outer leaflet of the cytoplasmic membrane. We have previously shown that purified MsbA from Escherichia coli displays high ATPase activity, and binds to lipids and lipid-like molecules, including lipid A, with affinity in the low micromolar range. Bacterial membrane vesicles isolated from E. coli overexpressing His6-tagged MsbA displayed ATP-dependent translocation of several fluorescently NBD (7-nitrobenz-2-oxa-1,3-diazole)-labelled phospholipid species. Purified MsbA was reconstituted into proteoliposomes of E. coli lipid and its ability to translocate NBD-labelled lipid derivatives was characterized. In this system, the protein displayed maximal lipid flippase activity of 7.7 nmol of lipid translocated per mg of protein over a 20 min period for an acyl chain-labelled PE (phosphatidylethanolamine) derivative. The protein showed the highest rates of flippase activity when reconstituted into an E. coli lipid mixture. Substantial flippase activity was also observed for a variety of other NBD-labelled phospholipids and glycolipids, including molecules labelled on either the headgroup or the acyl chain. Lipid flippase activity required ATP hydrolysis, and was dependent on the concentration of ATP and NBD–lipid. Translocation of NBD–PE was inhibited by the presence of the putative physiological substrate lipid A. The present paper represents the first report of a direct measurement of the lipid flippase activity of purified MsbA in a reconstituted system.


Sign in / Sign up

Export Citation Format

Share Document