LPS core type diversity in the Escherichia coli species and associations with phylogeny and virulence gene repertoire.

2021 ◽  
Author(s):  
Sebastien Olivier Leclercq ◽  
Maxime Branger ◽  
David GE Smith ◽  
Pierre GERMON

Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings, pathovars as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide component of the outer membrane of E. coli, is linked to the innermost lipid A through the core region of LPS of which 5 different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyze the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types while phylogroups B1, D and E strains were dominated by the R3 type and phylogroups B2 and C strains being dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clone of extra-intestinal pathogenic E. coli(ExPEC) strains. The origin of this uneven distribution is discussed but remains to be explained, as well as the consequences of carrying a specific core type on the physiology of the bacteria.

2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Sébastien O. Leclercq ◽  
Maxime Branger ◽  
David G. E. Smith ◽  
Pierre Germon

Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings and pathovars, as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide (LPS) component of the outer membrane of E. coli , is linked to the innermost lipid A through the core region of LPS of which five different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyse the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types, while phylogroups B1, D and E strains were dominated by the R3 type, and phylogroups B2 and C strains were dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clones of extraintestinal pathogenic E. coli (ExPEC) strains. The origin of this uneven distribution is discussed but remains to be fully explained, as well as the consequences of carrying a specific core type on the wider aspects of bacterial phenotype.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


2016 ◽  
Vol 60 (11) ◽  
pp. 6795-6805 ◽  
Author(s):  
Amit Ranjan ◽  
Sabiha Shaik ◽  
Agnismita Mondal ◽  
Nishant Nandanwar ◽  
Arif Hussain ◽  
...  

ABSTRACTThe global dissemination and increasing incidence of carbapenem-resistant, Gram-negative organisms have resulted in acute public health concerns. Here, we present a retrospective multicenter study on molecular characterization of metallo-β-lactamase (MBL)-producing clinicalEscherichia coliisolates recovered from extraintestinal infections in two hospitals in Pune, India. We screened a large sample size of 510E. coliisolates for MBL production wherein we profiled their molecular determinants, antimicrobial resistance phenotypes, functional virulence properties, genomic features, and transmission dynamics. Approximately 8% of these isolates were MBL producers, the majority of which were of the NDM-1 (69%) type, followed by NDM-5 (19%), NDM-4 (5.5%), and NDM-7 (5.5%). MBL producers were resistant to all antibiotics tested except for colistin, fosfomycin, and chloramphenicol, which were effective to various extents. Plasmids were found to be an effective means of dissemination of NDM genes and other resistance traits. All MBL producers adhered to and invaded bladder epithelial (T24) cells and demonstrated significant serum resistance. Genomic analysis of MBL-producingE. coliisolates revealed higher resistance but a moderate virulence gene repertoire. A subset of NDM-1-positiveE. coliisolates was identified as dominant sequence type 101 (ST101) while two strains belonging to ST167 and ST405 harbored NDM-5. A majority of MBL-producingE. colistrains revealed unique genotypes, suggesting that they were clonally unrelated. Overall, the coexistence of virulence and carbapenem resistance in clinicalE. coliisolates is of serious concern. Moreover, the emergence of NDM-1 among the globally dominantE. coliST101 isolates warrants stringent surveillance and control measures.


2016 ◽  
Vol 65 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Aleksandra Januszkiewicz ◽  
Waldemar Rastawicki

Shiga toxin-producing Escherichia coli (STEC) strains also called verotoxin-producing E. coli (VTEC) represent one of the most important groups of food-borne pathogens that can cause several human diseases such as hemorrhagic colitis (HC) and hemolytic – uremic syndrome (HUS) worldwide. The ability of STEC strains to cause disease is associated with the presence of wide range of identified and putative virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996 – 2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria.


Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 657-666 ◽  
Author(s):  
Sang-Hyun Kim ◽  
Wenyi Jia ◽  
Valeria R. Parreira ◽  
Russell E. Bishop ◽  
Carlton L. Gyles

This study shows that lipid A of Escherichia coli O157 : H7 differs from that of E. coli K-12 in that it has a phosphoform at the C-1 position, which is distinctively modified by a phosphoethanolamine (PEtN) moiety, in addition to the diphosphoryl form. The pmrC gene responsible for the addition of PEtN to the lipid A of E. coli O157 : H7 was inactivated and the changes in lipid A profiles were assessed. The pmrC null mutant still produced PEtN-modified lipid A species, albeit in a reduced amount, indicating that PmrC was not the only enzyme that could be used to add PEtN to lipid A. Natural PEtN substitution was shown to be present in the lipid A of other serotypes of enterohaemorrhagic E. coli and absent from the lipid A of E. coli K-12. However, the cloned pmrC O157 gene in a high-copy-number plasmid generated a large amount of PEtN-substituted lipid A species in E. coli K-12. The occurrence of PEtN-substituted lipid A species was associated with a slight increase in the MICs of cationic peptide antibiotics, suggesting that the lipid A modification with PEtN would be beneficial for survival of E. coli O157 : H7 in certain environmental niches. However, PEtN substitution in the lipid A profiles was not detected when putative inner-membrane proteins (YhbX/YbiP/YijP/Ecf3) that show significant similarity with PmrC in amino acid sequence were expressed from high-copy-number plasmids in E. coli K-12. This suggests that these potential homologues are not responsible for the addition of PEtN to lipid A in the pmrC mutant of E. coli O157 : H7. When cells were treated with EDTA, the amount of palmitoylated lipid A from the cells carrying a high-copy-number plasmid clone of pmrC O157 that resulted in significant increase of PEtN substitution was unchanged compared with cells without PEtN substitution, suggesting that the PEtN moiety substituted in lipid A does not compensate for the loss of divalent cations required for bridging neighbouring lipid A molecules.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Nicolas Kieffer ◽  
Guilhem Royer ◽  
Jean-Winoc Decousser ◽  
Anne-Sophie Bourrel ◽  
Mattia Palmieri ◽  
...  

ABSTRACT The plasmid-located mcr-9 gene, encoding a putative phosphoethanolamine transferase, was identified in a colistin-resistant human fecal Escherichia coli strain belonging to a very rare phylogroup, the D-ST69-O15:H6 clone. This MCR-9 protein shares 33% to 65% identity with the other plasmid-encoded MCR-type enzymes identified (MCR-1 to -8) that have been found as sources of acquired resistance to polymyxins in Enterobacteriaceae. Analysis of the lipopolysaccharide of the MCR-9-producing isolate revealed a function similar to that of MCR-1 by adding a phosphoethanolamine group to lipid A and subsequently modifying the structure of the lipopolysaccharide. However, a minor impact on susceptibility to polymyxins was noticed once the mcr-9 gene was cloned and produced in an E. coli K-12-derived strain. Nevertheless, we showed here that subinhibitory concentrations of colistin induced the expression of the mcr-9 gene, leading to increased MIC levels. This inducible expression was mediated by a two-component regulatory system encoded by the qseC and qseB genes located downstream of mcr-9. Genetic analysis showed that the mcr-9 gene was carried by an IncHI2 plasmid. In silico analysis revealed that the plasmid-encoded MCR-9 shared significant amino acid identity (ca. 80%) with the chromosomally encoded MCR-like proteins from Buttiauxella spp. In particular, Buttiauxella gaviniae was found to harbor a gene encoding MCR-BG, sharing 84% identity with MCR-9. That gene was neither expressed nor inducible in its original host, which was fully susceptible to polymyxins. This work showed that mcr genes may circulate silently and remain undetected unless induced by colistin.


2020 ◽  
Author(s):  
Saskia-Camille Flament-Simon ◽  
María de Toro ◽  
Liubov Chuprikova ◽  
Miguel Blanco ◽  
Juan Moreno-González ◽  
...  

AbstractSelf-synthesizing transposons are integrative mobile genetic elements (MGEs) that encode their own B-family DNA polymerase (PolB). Discovered a few years ago, they are proposed as key players in the evolution of several groups of DNA viruses and virus-host interaction machinery. Pipolins are the most recent addition to the group, are integrated in the genomes of bacteria from diverse phyla and also present as circular plasmids in mitochondria. Remarkably, pipolins-encoded PolBs are proficient DNA polymerases endowed with DNA priming capacity, hence the name, primer-independent PolB (piPolB).We have now surveyed the presence of pipolins in a collection of 2238 human and animal pathogenic Escherichia coli strains and found that, although detected in only 25 new isolates (1.1%), they are present in E. coli strains from a wide variety of pathotypes, serotypes, phylogenetic groups and sequence types. Overall, the pangenome of strains carrying pipolins is highly diverse, despite the fact that a considerable number of strains belongs to only three clonal complexes (CC10, CC23 and CC32). Comparative analysis with a set of 67 additional pipolin-harboring strains from GenBank further confirmed these results. The genetic structure of pipolins shows great flexibility and variability, with the piPolB gene and the attachment sites being the only common features. Most pipolins contain one or more recombinases that would be involved in excision/integration of the element in the same conserved tRNA gene. This mobilization mechanism might explain the apparent incompatibility of pipolins with other integrative MGEs such as integrons.In addition, analysis of cophylogeny between pipolins and pipolin-harboring strains showed a lack of congruence between several pipolins and their host strains, in agreement with horizontal transfer between hosts. Overall, these results indicate that pipolins can serve as a vehicle for genetic transfer among circulating E. coli and possibly also among other pathogenic bacteria.


2007 ◽  
Vol 73 (18) ◽  
pp. 5703-5710 ◽  
Author(s):  
Satoshi Ishii ◽  
Katriya P. Meyer ◽  
Michael J. Sadowsky

ABSTRACT Escherichia coli strains in water may originate from various sources, including humans, farm and wild animals, waterfowl, and pets. However, potential human health hazards associated with E. coli strains present in various animal hosts are not well known. In this study, E. coli strains from diverse human and animal sources in Minnesota and western Wisconsin were analyzed for the presence of genes coding for virulence factors by using multiplex PCR and biochemical reactions. Of the 1,531 isolates examined, 31 (2%) were found to be Shiga toxin-producing E. coli (STEC) strains. The majority of these strains, which were initially isolated from the ruminants sheep, goats, and deer, carried the stx 1c and/or stx 2d, ehxA, and saa genes and belonged to E. coli phylogenetic group B1, indicating that they most likely do not cause severe human diseases. All the STEC strains, however, lacked eae. In contrast, 26 (1.7%) of the E. coli isolates examined were found to be potential enteropathogenic E. coli (EPEC) strains and consisted of several intimin subtypes that were distributed among various human and animal hosts. The EPEC strains belonged to all four phylogenetic groups examined, suggesting that EPEC strains were relatively widespread in terms of host animals and genetic background. Atypical EPEC strains, which carried an EPEC adherence factor plasmid, were identified among E. coli strains from humans and deer. DNA fingerprint analyses, done using the horizontal, fluorophore-enhanced repetitive-element, palindromic PCR technique, indicated that the STEC, potential EPEC, and non-STEC ehxA-positive E. coli strains were genotypically distinct and clustered independently. However, some of the potential EPEC isolates were genotypically indistinguishable from nonpathogenic E. coli strains. Our results revealed that potential human health hazards associated with pathogenic E. coli strains varied among the animal hosts that we examined and that some animal species may harbor a greater number of potential pathogenic strains than other animal species.


2020 ◽  
Author(s):  
Kari A.C. Green ◽  
Branden S.J. Gregorchuk ◽  
Shelby L. Reimer ◽  
Nicola H. Cartwright ◽  
Daniel R. Beniac ◽  
...  

AbstractQuaternary ammonium compounds (QACs) benzalkonium (BZK) and cetrimide (CET) are common disinfectants used to inhibit or eradicate Gram-negative bacteria in clinical and agricultural products. QAC tolerance in Escherichia coli and other Enterobacterales species can confer cross-resistance to various clinically used antibiotics, making it important to understand mechanisms of QAC tolerance in greater depth. QAC adaptation by E. coli is hypothesized to alter MarRAB regulated genes that converge on the outer membrane, specifically, lipid A biosynthesis and transport genes, porins, and efflux pump systems. To test this, we performed a ‘multi’-omics and phenotypic characterization of E. coli K-12 adapted to BZK and CET, to assess how QACs alter cell growth, genomics, and proteomics. E. coli adapted to either BZK and CET resulted in strains with stable QAC tolerance when either drug was omitted, elongated and narrower cell morphologies by scanning electron microscopy, and reduced growth fitness when compared to un-adapted E. coli. Antimicrobial susceptibility testing revealed that QAC adaptation increased E. coli tolerance by ≥4-fold to BZK, CET, and other QACs but no antibiotic cross-resistance. Single nucleotide variants identified by whole genome sequencing and differentially accumulated proteins by liquid chromatography-mass spectrometry identified alterations to various QAC-adapted E. coli genes and proteins belonging to: lipid A biosynthesis and transport (lpxLM, msbA, mla), the mar-sox-rob regulatory pathway (marR, rob), DNA/protein translation (gyrA, rpsA, rpoB, rapA). These alterations validate the hypothesis that mar-sox-rob network plays a role in QAC tolerance and identifies additional stress inducible genetic and protein QAC tolerant biomarkers.ImportanceBacterial tolerance mechanisms associated with disinfectant QAC adaptation is hypothesized to overlap with the mar-sox-rob multiple antimicrobial resistance pathway but has not been directly shown. Here, we generate QAC tolerant E. coli strains and identify phenotypic changes associated with protein and genetic alterations caused by prolonged QAC exposure. We identified genes that overlap with known antibiotic resistance mechanisms as well as distinct genes and proteins specific to QAC adaptation that are useful for future bacterial disinfectant tolerance mechanism studies. However, these altered genes and proteins implicate MarR and Rob pathways specifically in QAC tolerance but, surprisingly, the involvement of mar-sox-rob pathways did not increase antibiotic cross-resistance. Many altered genes we identified were essential genes in lipid A biosynthesis/transport, DNA and RNA transcription, and protein regulation systems potentially explaining why only QAC cross-tolerance was observed and why we observed greater cell fitness costs despite MarR and Rob pathway involvement.


2010 ◽  
Vol 76 (13) ◽  
pp. 4158-4168 ◽  
Author(s):  
Dae-Hee Lee ◽  
Bernhard Ø. Palsson

ABSTRACT Laboratory adaptive evolution studies can provide key information to address a wide range of issues in evolutionary biology. Such studies have been limited thus far by the inability of workers to readily detect mutations in evolved microbial strains on a genome scale. This limitation has now been overcome by recently developed genome sequencing technology that allows workers to identify all accumulated mutations that appear during laboratory adaptive evolution. In this study, we evolved Escherichia coli K-12 MG1655 with a nonnative carbon source, l-1,2-propanediol (l-1,2-PDO), for ∼700 generations. We found that (i) experimental evolution of E. coli for ∼700 generations in 1,2-PDO-supplemented minimal medium resulted in acquisition of the ability to use l-1,2-PDO as a sole carbon and energy source so that the organism changed from an organism that did not grow at all initially to an organism that had a growth rate of 0.35 h−1; (ii) six mutations detected by whole-genome resequencing accumulated in the evolved E. coli mutant over the course of adaptive evolution on l-1,2-PDO; (iii) five of the six mutations were within coding regions, and IS5 was inserted between two fuc regulons; (iv) two major mutations (mutations in fucO and its promoter) involved in l-1,2-PDO catabolism appeared early during adaptive evolution; and (v) multiple defined knock-in mutant strains with all of the mutations had growth rates essentially matching that of the evolved strain. These results provide insight into the genetic basis underlying microbial evolution for growth on a nonnative substrate.


Sign in / Sign up

Export Citation Format

Share Document